Most cited article - PubMed ID 29053157
Current applications of multiparameter flow cytometry in plasma cell disorders
Minimal residual disease (MRD) is one of the most important prognostic factors in multiple myeloma (MM) and a valid surrogate for progression-free survival (PFS) and overall survival (OS). Recently, MRD negativity was approved as an early clinical endpoint for accelerated drug approval in MM. Nevertheless, there is limited evidence of MRD utility in real-world setting. In this retrospective multicenter study, we report outcomes of 331 newly diagnosed MM patients with MRD evaluation at Day+100 after autologous stem cell transplantation using flow cytometry with a median limit of detection of 0.001%. MRD negativity was reached in 47% of patients and was associated with significantly prolonged median PFS (49.2 months vs. 18.4 months; hazard ratios (HR) = 0.37; p < 0.001) and OS (not reached vs. 74.9 months; HR = 0.50; p = 0.007). Achieving MRD negativity was associated with PFS improvements regardless of age, International Staging System (ISS) stage, lactate dedydrogenase (LDH) level, or cytogenetic risk. Importantly, MRD positive patients benefited from lenalidomide maintenance versus no maintenance (18-months PFS: 81% vs. 46%; HR = 0.24; p = 0.002) while in MRD negative patients such benefit was not observed (p = 0.747). The outcomes of our real-world study recapitulate results from clinical trials including meta-analyses and support the idea that MRD positive patients profit more from lenalidomide maintenance than MRD negative ones.
- Keywords
- lenalidomide maintenance, minimal residual disease (MRD), multiparameter flow cytometry, multiple myeloma, overall survival (OS), progression‐free survival (PFS), real‐world,
- MeSH
- Transplantation, Autologous MeSH
- Adult MeSH
- Lenalidomide administration & dosage therapeutic use MeSH
- Middle Aged MeSH
- Humans MeSH
- Multiple Myeloma * diagnosis mortality therapy pathology MeSH
- Prognosis MeSH
- Flow Cytometry * methods MeSH
- Retrospective Studies MeSH
- Neoplasm, Residual * diagnosis MeSH
- Aged MeSH
- Neoplasm Staging MeSH
- Hematopoietic Stem Cell Transplantation methods MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Names of Substances
- Lenalidomide MeSH
PURPOSE: Primary plasma cell leukemia (PCL) is the most aggressive monoclonal gammopathy. It was formerly characterized by ≥ 20% circulating plasma cells (CTCs) until 2021, when this threshold was decreased to ≥ 5%. We hypothesized that primary PCL is not a separate clinical entity, but rather that it represents ultra-high-risk multiple myeloma (MM) characterized by elevated CTC levels. METHODS: We assessed the levels of CTCs by multiparameter flow cytometry in 395 patients with newly diagnosed transplant-ineligible MM to establish a cutoff for CTCs that identifies the patients with ultra-high-risk PCL-like MM. We tested the cutoff on 185 transplant-eligible patients with MM and further validated on an independent cohort of 280 transplant-ineligible patients treated in the GEM-CLARIDEX trial. The largest published real-world cohort of patients with primary PCL was used for comparison of survival. Finally, we challenged the current 5% threshold for primary PCL diagnosis. RESULTS: Newly diagnosed transplant-ineligible patients with MM with 2%-20% CTCs had significantly shorter progression-free survival (3.1 v 15.6 months; P < .001) and overall survival (14.6 v 33.6 months; P = .023) than patients with < 2%. The 2% cutoff proved to be applicable also in transplant-eligible patients with MM and was successfully validated on an independent cohort of patients from the GEM-CLARIDEX trial. Most importantly, patients with 2%-20% CTCs had comparable dismal outcomes with primary PCL. Moreover, after revealing a low mean difference between flow cytometric and morphologic evaluation of CTCs, we showed that patients with 2%-5% CTCs have similar outcomes as those with 5%-20% CTCs. CONCLUSION: Our study uncovers that ≥ 2% CTCs is a biomarker of hidden primary PCL and supports the assessment of CTCs by flow cytometry during the diagnostic workup of MM.
- MeSH
- Humans MeSH
- Multiple Myeloma * drug therapy MeSH
- Biomarkers, Tumor MeSH
- Neoplastic Cells, Circulating * pathology MeSH
- Plasma Cells pathology MeSH
- Leukemia, Plasma Cell * MeSH
- Prognosis MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers, Tumor MeSH
Extramedullary multiple myeloma (EMD) is an aggressive disease; malignant plasma cells lose their dependence in the bone marrow microenvironment and migrate into tissues. EMD is a negative prognostic factor of survival. Using flow cytometry and next-generation sequencing, we aimed to identify antigens and microRNAs (miRNAs) involved in EMD pathogenesis. Flow cytometry analysis revealed significant differences in the level of clonal plasma cells between MM and EMD patients, while the expression of CD markers was comparable between these two groups. Further, miR-26a-5p and miR-30e-5p were found to be significantly down-regulated in EMD compared to MM. Based on the expression of miR-26a-5p, we were able to distinguish these two groups of patients with high sensitivity and specificity. In addition, the involvement of deregulated miRNAs in cell cycle regulation, ubiquitin-mediated proteolysis and signaling pathways associated with infections or neurological disorders was observed using GO and KEGG pathways enrichment analysis. Subsequently, a correlation between the expression of analyzed miRNAs and the levels of CD molecules was observed. Finally, clinicopathological characteristics as well as CD antigens associated with the prognosis of MM and EMD patients were identified. Altogether, we identified several molecules possibly involved in the transformation of MM into EMD.
- Keywords
- NGS, bioinformatics, immunophenotyping, microRNA, multiple myeloma,
- MeSH
- Humans MeSH
- MicroRNAs * genetics MeSH
- Multiple Myeloma * genetics MeSH
- Tumor Microenvironment MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- MicroRNAs * MeSH
Plasma cell leukaemia (PCL) is a rare and very aggressive plasma cell disorder. Preventing a dismal outcome of PCL requires early diagnosis with appropriate analytical tools. Therefore, the investigation of 33 patients with primary and secondary PCL was done when the quantity of circulating plasma cells (PCs) using flow cytometry (FC) and morphology assessment was evaluated. The phenotypic profile of the PCs was also analysed to determine if there is an association with clinical outcomes and to evaluate the prognostic value of analysed markers. Our results revealed that FC is an excellent method for identifying circulating PCs as a significantly higher number was identified by FC than by morphology (26·7% vs. 13·5%, P = 0·02). None of secondary PCL cases expressed CD19 or CD20. A low level of expression with similar positivity of CD27, CD28, CD81 and CD117 was found in both PCL groups. A decrease of CD44 expression was detected only in secondary PCL. Expression of CD56 was present in more than half of PCL cases as well as cytoplasmic nestin. A decreased level of platelets, Eastern Cooperative Oncology Group score of 2-3 and lack of CD20+ PC were associated with a higher risk of death. FC could be incorporated in PCL diagnostics not only to determine the number of circulating PCs, but also to assess their phenotype profile and this information should be useful in patients' diagnosis and possible prognosis.
- Keywords
- flow cytometry, multiple myeloma, phenotype, plasma cell, plasma cell leukaemia, prognosis,
- MeSH
- Antigens, Neoplasm analysis MeSH
- Bone Marrow Cells chemistry MeSH
- Early Detection of Cancer MeSH
- Antigens, CD analysis MeSH
- Progression-Free Survival MeSH
- Adult MeSH
- False Negative Reactions MeSH
- Immunophenotyping MeSH
- Kaplan-Meier Estimate MeSH
- Bone Marrow pathology MeSH
- Blood Cell Count * methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Neoplastic Cells, Circulating * MeSH
- Plasma Cells * chemistry ultrastructure MeSH
- Leukemia, Plasma Cell blood mortality MeSH
- Flow Cytometry methods MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Antigens, Neoplasm MeSH
- Antigens, CD MeSH