Nejvíce citovaný článek - PubMed ID 29182572
BACKGROUND: Pancreatic cancer is the most common pancreatic solid malignancy with an aggressive clinical course and low survival rate. There are a limited number of reliable prognostic biomarkers and a need to understand the pathogenesis of pancreatic tumors; neuroendocrine (PNET) and pancreatic ductal adenocarcinomas (PDAC) encouraged us to analyze the serum metabolome of pancreatic tumors and disturbances in the metabolism of PDAC and PNET. METHODS: Using the AbsoluteIDQ® p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria) with liquid chromatography-mass spectrometry (LC-MS), we identified changes in metabolite profiles and disrupted metabolic pathways serum of NET and PDAC patients. RESULTS: The concentration of six metabolites showed statistically significant differences between the control group and PDAC patients (p.adj < 0.05). Glutamine (Gln), acetylcarnitine (C2), and citrulline (Cit) presented a lower concentration in the serum of PDAC patients, while phosphatidylcholine aa C32:0 (PC aa C32:0), sphingomyelin C26:1 (SM C26:1), and glutamic acid (Glu) achieved higher concentrations compared to serum samples from healthy individuals. Five of the tested metabolites: C2 (FC = 8.67), and serotonin (FC = 2.68) reached higher concentration values in the PNET serum samples compared to PDAC, while phosphatidylcholine aa C34:1 (PC aa C34:1) (FC = -1.46 (0.68)) had a higher concentration in the PDAC samples. The area under the curves (AUC) of the receiver operating characteristic (ROC) curves presented diagnostic power to discriminate pancreatic tumor patients, which were highest for acylcarnitines: C2 with AUC = 0.93, serotonin with AUC = 0.85, and PC aa C34:1 with AUC = 0.86. CONCLUSIONS: The observations presented provide better insight into the metabolism of pancreatic tumors, and improve the diagnosis and classification of tumors. Serum-circulating metabolites can be easily monitored without invasive procedures and show the present clinical patients' condition, helping with pharmacological treatment or dietary strategies.
- Klíčová slova
- AbsoluteIDQ® p180 kit, Biocrates, C2, acetylcarnitine, acylcarnitine, amino acids, carnitine, glicerophospholipids, glutamine, metabolite, metabolome, neuroendocrine pancreatic tumor (PNET), pancreas, pancreatic ductal adenocarcinoma (PDAC), pancreatic tumor, serotonine,
- Publikační typ
- časopisecké články MeSH
Lipid catabolism and anabolism changes play a role in stemness acquisition by cancer cells, and cancer stem cells (CSCs) are particularly dependent on the activity of the enzymes involved in these processes. Lipidomic changes could play a role in CSCs' ability to cause disease relapse and chemoresistance. The exploration of lipid composition and metabolism changes in CSCs in the context of hepatocellular cancer (HCC) is still incomplete and their lipidomic scenario continues to be elusive. We aimed to evaluate through high-throughput mass spectrometry (MS)-based lipidomics the levels of the members of the six major classes of sphingolipids and phospholipids in two HCC cell lines (HepG2 and Huh-7) silenced for the expression of histone variant macroH2A1 (favoring stemness acquisition), or silenced for the expression of focal adhesion tyrosine kinase (FAK) (hindering aggressiveness and stemness). Transcriptomic changes were evaluated by RNA sequencing as well. We found definite lipidomic and transcriptomic changes in the HCC lines upon knockdown (KD) of macroH2A1 or FAK, in line with the acquisition or loss of stemness features. In particular, macroH2A1 KD increased total sphingomyelin (SM) levels and decreased total lysophosphatidylcholine (LPC) levels, while FAK KD decreased total phosphatidylcholine (PC) levels. In conclusion, in HCC cell lines knocked down for specific signaling/epigenetic processes driving opposite stemness potential, we defined a lipidomic signature that hallmarks hepatic CSCs to be exploited for therapeutic strategies.
- Klíčová slova
- FAK, HCC, cancer stem cells, macroH2A1, stemness,
- MeSH
- buňky Hep G2 MeSH
- fokální adhezní kinasa 1 antagonisté a inhibitory nedostatek genetika MeSH
- fosfatidylcholiny metabolismus MeSH
- genový knockdown MeSH
- hepatocelulární karcinom genetika metabolismus patologie MeSH
- histony antagonisté a inhibitory nedostatek genetika MeSH
- lidé MeSH
- lipidomika MeSH
- lysofosfatidylcholiny metabolismus MeSH
- metabolismus lipidů * genetika MeSH
- nádorové biomarkery genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové kmenové buňky metabolismus patologie MeSH
- nádory jater genetika metabolismus patologie MeSH
- regulace genové exprese u nádorů MeSH
- sekvenování transkriptomu MeSH
- sfingomyeliny metabolismus MeSH
- stanovení celkové genové exprese MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fokální adhezní kinasa 1 MeSH
- fosfatidylcholiny MeSH
- histony MeSH
- lysofosfatidylcholiny MeSH
- MACROH2A1 protein, human MeSH Prohlížeč
- nádorové biomarkery MeSH
- PTK2 protein, human MeSH Prohlížeč
- sfingomyeliny MeSH