Most cited article - PubMed ID 29186106
Late preterm prelabor rupture of fetal membranes: fetal inflammatory response and neonatal outcome
Preterm prelabour rupture of membranes (PPROM) complicated by intra-amniotic inflammation (IAI) represents a substantial proportion of preterm birth cases. Currently, IAI is frequently defined as amniotic fluid IL-6 concentration above 2,600 pg/mL. However, the amniotic fluid IL-6 concentration was never correlated with the global response of other proinflammatory proteins to the ongoing IAI. In this cross-sectional study, protein quantification was performed using mass spectrometry (MS) analysis followed by target quantification of selected proinflammatory proteins. Levels of amniotic fluid proteins determined by MS were put into the correlation with IL-6 concentration determined by electrochemiluminescence immunoassay method (ECLIA). In total, 925 proteins were efficiently quantified and differential expression analysis revealed 378 proteins upregulated towards IL-6 concentration above 10,000 pg/mL. Four proteins (LCN2, MMP8, MPO, and S100A12) were selected to verify the achieved results and IL-6 concentration of 10,000 pg/mL was determined as the cut-off value for global IAI response.
- MeSH
- Biomarkers metabolism MeSH
- Chorioamnionitis * metabolism MeSH
- Adult MeSH
- Interleukin-6 metabolism MeSH
- Humans MeSH
- Amniotic Fluid * metabolism MeSH
- Fetal Membranes, Premature Rupture * metabolism pathology MeSH
- S100A12 Protein metabolism MeSH
- Cross-Sectional Studies MeSH
- Pregnancy MeSH
- Inflammation * metabolism MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biomarkers MeSH
- IL6 protein, human MeSH Browser
- Interleukin-6 MeSH
- S100A12 Protein MeSH
OBJECTIVE: To determine the association between microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI) and the cervical prevalence of Gardnerella vaginalis DNA in pregnancies with preterm prelabor rupture of membrane (PPROM). METHOD: In total, 405 women with singleton pregnancies complicated with PPROM were included. Cervical fluid and amniotic fluid samples were collected at the time of admission. Bacterial and G. vaginalis DNA were assessed in the cervical fluid samples using quantitative PCR technique. Concentrations of interleukin-6 and MIAC were evaluated in the amniotic fluid samples. Loads of G. vaginalis DNA ≥ 1% of the total cervical bacterial DNA were used to define the cervical prevalence of G. vaginalis as abundant. Based on the MIAC and IAI, women were categorized into four groups: with intra-amniotic infection (both MIAC and IAI), with sterile IAI (IAI without MIAC), with MIAC without IAI, and without either MIAC or IAI. RESULTS: The presence of the abundant cervical G. vaginalis was related to MIAC (with: 65% vs. without: 44%; p = 0.0004) but not IAI (with: 52% vs. without: 48%; p = 0.70). Women with MIAC without IAI had the highest load of the cervical G. vaginalis DNA (median 2.0 × 104 copies DNA/mL) and the highest presence of abundant cervical G. vaginalis (73%). CONCLUSIONS: In women with PPROM, the presence of cervical G. vaginalis was associated with MIAC, mainly without the concurrent presence of IAI.
- MeSH
- Cervix Uteri microbiology MeSH
- Chorioamnionitis microbiology MeSH
- Adult MeSH
- Gardnerella vaginalis isolation & purification MeSH
- Interleukin-6 analysis MeSH
- Humans MeSH
- Amniotic Fluid chemistry microbiology MeSH
- Fetal Membranes, Premature Rupture microbiology MeSH
- Prospective Studies MeSH
- Pregnancy MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Interleukin-6 MeSH
Preterm prelabour rupture of membranes beyond the 34th week of gestation (late PPROM) is frequently associated with the risk of the microbial invasion of the amniotic fluid (MIAC) and histological chorioamnionitis (HCA). Hence, we employed a Tandem Mass Tag-based approach to uncover amniotic fluid proteome response to the presence of MIAC and HCA in late PPROM. Protein dysregulation was associated with only five cases in the group of 15 women with confirmed MIAC and HCA. Altogether, 138 amniotic fluid proteins were changed in these five cases exclusively. These proteins were particularly associated with excessive neutrophil responses to infection, such as neutrophil degranulation and extracellular trap formation. We believe that the quantification of these proteins in amniotic fluid may assist in revealing women with the highest risk of excessive inflammatory response in late PPROM.
- MeSH
- Chorioamnionitis metabolism microbiology MeSH
- Adult MeSH
- Pregnancy Complications, Infectious metabolism MeSH
- Cohort Studies MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Fetal Membranes, Premature Rupture metabolism MeSH
- Proteomics methods MeSH
- Pregnancy MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Preterm prelabor rupture of the membranes (PPROM) is frequently complicated by intraamniotic inflammatory processes such as intraamniotic infection and sterile intraamniotic inflammation. Antibiotic therapy is recommended to patients with PPROM to prolong the interval between this complication and delivery (latency period), reduce the risk of clinical chorioamnionitis, and improve neonatal outcome. However, there is a lack of information regarding whether the administration of antibiotics can reduce the intensity of the intraamniotic inflammatory response or eradicate microorganisms in patients with PPROM. OBJECTIVE: The first aim of the study was to determine whether antimicrobial agents can reduce the magnitude of the intraamniotic inflammatory response in patients with PPROM by assessing the concentrations of interleukin-6 in amniotic fluid before and after antibiotic treatment. The second aim was to determine whether treatment with intravenous clarithromycin changes the microbial load of Ureaplasma spp DNA in amniotic fluid. STUDY DESIGN: A retrospective cohort study included patients who had (1) a singleton gestation, (2) PPROM between 24+0 and 33+6 weeks, (3) a transabdominal amniocentesis at the time of admission, and (4) intravenous antibiotic treatment (clarithromycin for patients with intraamniotic inflammation and benzylpenicillin/clindamycin in the cases of allergy in patients without intraamniotic inflammation) for 7 days. Follow-up amniocenteses (7th day after admission) were performed in the subset of patients with a latency period lasting longer than 7 days. Concentrations of interleukin-6 were measured in the samples of amniotic fluid with a bedside test, and the presence of microbial invasion of the amniotic cavity was assessed with culture and molecular microbiological methods. Intraamniotic inflammation was defined as a bedside interleukin-6 concentration ≥745 pg/mL in the samples of amniotic fluid. Intraamniotic infection was defined as the presence of both microbial invasion of the amniotic cavity and intraamniotic inflammation; sterile intraamniotic inflammation was defined as the presence of intraamniotic inflammation without microbial invasion of the amniotic cavity. RESULTS: A total of 270 patients with PPROM were included in this study: 207 patients delivered within 7 days and 63 patients delivered after 7 days of admission. Of the 63 patients who delivered after 7 days following the initial amniocentesis, 40 underwent a follow-up amniocentesis. Patients with intraamniotic infection (n = 7) and sterile intraamniotic inflammation (n = 7) were treated with intravenous clarithromycin. Patients without either microbial invasion of the amniotic cavity or intraamniotic inflammation (n = 26) were treated with benzylpenicillin or clindamycin. Treatment with clarithromycin decreased the interleukin-6 concentration in amniotic fluid at the follow-up amniocentesis compared to the initial amniocentesis in patients with intraamniotic infection (follow-up: median, 295 pg/mL, interquartile range [IQR], 72-673 vs initial: median, 2973 pg/mL, IQR, 1750-6296; P = .02) and in those with sterile intraamniotic inflammation (follow-up: median, 221 pg/mL, IQR 118-366 pg/mL vs initial: median, 1446 pg/mL, IQR, 1300-2941; P = .02). Samples of amniotic fluid with Ureaplasma spp DNA had a lower microbial load at the time of follow-up amniocentesis compared to the initial amniocentesis (follow-up: median, 1.8 × 104 copies DNA/mL, 2.9 × 104 to 6.7 × 108 vs initial: median, 4.7 × 107 copies DNA/mL, interquartile range, 2.9 × 103 to 3.6 × 107; P = .03). CONCLUSION: Intravenous therapy with clarithromycin was associated with a reduction in the intensity of the intraamniotic inflammatory response in patients with PPROM with either intraamniotic infection or sterile intraamniotic inflammation. Moreover, treatment with clarithromycin was related to a reduction in the load of Ureaplasma spp DNA in the amniotic fluid of patients with PPROM <34 weeks of gestation.
- Keywords
- 16S ribosomal RNA, Ureaplasma, amniocentesis, amniotic fluid, bacteria, benzylpenicillin, biomarker, chorioamnionitis, clarithromycin, funisitis, genital mycoplasmas, great obstetrical syndromes, inflammation, interleukin-6, intraamniotic infection, microbial invasion of the amniotic cavity, neonatal outcome, neonatal sepsis, nucleic acid, polymerase chain reaction, pregnancy, prematurity, preterm birth, rapid point of care test, sterile intraamniotic inflammation,
- MeSH
- Anti-Bacterial Agents therapeutic use MeSH
- Bacterial Infections etiology prevention & control MeSH
- Chorioamnionitis etiology prevention & control MeSH
- DNA, Bacterial analysis MeSH
- Adult MeSH
- Interleukin-6 analysis MeSH
- Clarithromycin therapeutic use MeSH
- Clindamycin therapeutic use MeSH
- Cohort Studies MeSH
- Humans MeSH
- Penicillin G therapeutic use MeSH
- Amniotic Fluid chemistry MeSH
- Fetal Membranes, Premature Rupture * MeSH
- Retrospective Studies MeSH
- Pregnancy MeSH
- Ureaplasma genetics MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- DNA, Bacterial MeSH
- IL6 protein, human MeSH Browser
- Interleukin-6 MeSH
- Clarithromycin MeSH
- Clindamycin MeSH
- Penicillin G MeSH
OBJECTIVE: To evaluate the association between cervical human papillomavirus (HPV) infection at the time of admission and the presence of microbial invasion of the amniotic cavity (MIAC) and intra-amniotic inflammation (IAI) in women with preterm prelabor rupture of membranes (PPROM) and to determine the association between cervical HPV infection and short-term neonatal morbidity. METHODS: One hundred women with singleton pregnancies complicated by PPROM between the gestational ages of 24+0 and 36+6 weeks were included in the study. The presence of HPV DNA was evaluated in scraped cervical cells using polymerase chain reaction (PCR). Amniotic fluid samples were obtained by transabdominal amniocentesis. RESULTS: The rate of cervical HPV infection in women with PPROM was 24%. The rates of MIAC and IAI were not different between women with cervical HPV infection and those without cervical HPV infection [MIAC: with HPV: 21% (5/24) vs. without HPV: 22% (17/76), p = 1.00; IAI: with HPV: 21% (5/24) vs. without HPV: 18% (14/76), p = 0.77]. There were no differences in the selected aspects of short-term neonatal morbidity between women with and without cervical HPV infection. CONCLUSIONS: In women with PPROM, the presence of cervical HPV infection at the time of admission is not related to a higher risk of intra-amniotic infection-related and inflammatory complications or worse short-term neonatal outcomes.
- MeSH
- Cervix Uteri virology MeSH
- Adult MeSH
- Papillomavirus Infections complications MeSH
- Infant MeSH
- Infant Mortality MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Papillomaviridae physiology MeSH
- Amniotic Fluid virology MeSH
- Fetal Membranes, Premature Rupture virology MeSH
- Patient Admission MeSH
- Pregnancy MeSH
- Check Tag
- Adult MeSH
- Infant MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH