Most cited article - PubMed ID 29216207
Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance
Biological systems manifest continuous weak autoluminescence, which is present even in the absence of external stimuli. Since this autoluminescence arises from internal metabolic and physiological processes, several works suggested that it could carry information in the time series of the detected photon counts. However, there is little experimental work which would show any difference of this signal from random Poisson noise and some works were prone to artifacts due to lacking or improper reference signals. Here we apply rigorous statistical methods and advanced reference signals to test the hypothesis whether time series of autoluminescence from germinating mung beans display any intrinsic correlations. Utilizing the fractional Brownian bridge that employs short samples of time series in the method kernel, we suggest that the detected autoluminescence signal from mung beans is not totally random, but it seems to involve a process with a negative memory. Our results contribute to the development of the rigorous methodology of signal analysis of photonic biosignals.
- MeSH
- Germination physiology MeSH
- Luminescence * MeSH
- Vigna growth & development MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
It is well known that all biological systems which undergo oxidative metabolism or oxidative stress generate a small amount of light. Since the origin of excited states producing this light is generally accepted to come from chemical reactions, the term endogenous biological chemiluminescence is appropriate. Apart from biomedicine, this phenomenon has potential applications also in plant biology and agriculture like monitoring the germination rate of seeds. While chemiluminescence capability to monitor germination has been measured on multiple agriculturally relevant plants, the standard model plant Arabidopsis thaliana has not been analyzed for this process so far. To fill in this gap, we demonstrate here on A. thaliana that the intensity of endogenous chemiluminescence increases during the germination stage. We showed that the chemiluminescence intensity increases since the second day of germination, but reaches a plateau on the third day, in contrast to other plants germinating from larger seeds studied so far. We also showed that intensity increases after topical application of hydrogen peroxide in a dose-dependent manner. Further, we demonstrated that the entropy of the chemiluminescence time series is similar to random Poisson signals. Our results support a notion that metabolism and oxidative reactions are underlying processes which generate endogenous biological chemiluminescence. Our findings contribute to novel methods for non-invasive and label-free sensing of oxidative processes in plant biology and agriculture.
- MeSH
- Arabidopsis genetics growth & development metabolism MeSH
- Biomarkers MeSH
- Germination * genetics MeSH
- Luminescence * MeSH
- Oxidation-Reduction drug effects MeSH
- Oxidative Stress MeSH
- Hydrogen Peroxide metabolism pharmacology MeSH
- Seeds genetics growth & development metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- Hydrogen Peroxide MeSH