Nejvíce citovaný článek - PubMed ID 29427622
Most of the organs of the digestive tract comprise secretory epithelia that require specialized molecular machines to achieve their functions. As such anterior gradient (AGR) proteins, which comprise AGR1, AGR2, and AGR3, belong to the protein disulfide isomerase family, and are involved in secretory and transmembrane protein biogenesis in the endoplasmic reticulum. They are generally expressed in epithelial cells with high levels in most of the digestive tract epithelia. To date, the vast majority of the reports concern AGR2, which has been shown to exhibit various subcellular localizations and exert pro-oncogenic functions. AGR2 overexpression has recently been associated with a poor prognosis in digestive cancers. AGR2 is also involved in epithelial homeostasis. Its deletion in mice results in severe diffuse gut inflammation, whereas in inflammatory bowel diseases, the secretion of AGR2 in the extracellular milieu participates in the reshaping of the cellular microenvironment. AGR2 thus plays a key role in inflammation and oncogenesis and may represent a therapeutic target of interest. In this review, we summarize the already known roles and mechanisms of action of the AGR family proteins in digestive diseases, their expression in the healthy digestive tract, and in digestive oncology. At last, we discuss the potential diagnostic and therapeutic implications underlying the biology of AGR proteins.
- MeSH
- gastrointestinální nádory * genetika MeSH
- karcinogeneze genetika MeSH
- mukoproteiny genetika MeSH
- myši MeSH
- nádorové mikroprostředí MeSH
- onkogenní proteiny * genetika MeSH
- proteindisulfidisomerasy MeSH
- zánět genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- mukoproteiny MeSH
- onkogenní proteiny * MeSH
- proteindisulfidisomerasy MeSH
There is growing epidemiological evidence indicating an association between diabetes mellitus and the increased incidence of colorectal cancer (CRC). The preferred initial and most widely used pharmacological agent for the treatment of type 2 diabetes is metformin, which in parallel reduces the risk of CRC and improves patient prognosis. AMP-activated protein kinase (AMPK) appears to be tightly associated with the beneficial metabolic effects of metformin, serving as a cellular energy sensor activated in response to a variety of conditions that deplete cellular energy levels. Such conditions include nutrient starvation (particularly glucose), hypoxia and exposure to toxins that inhibit the mitochondrial respiratory chain complex. The aim of the present study was to determine the effect of metformin on CRC cell lines, with different levels of anterior gradient 2 (AGR2) expression, exposed to 5-fluorouracil (5-FU) and oxaliplatin, alone or in combination with metformin. AGR2 has recently emerged as a factor involved in colon carcinogenesis. In AGR2-knockout cells, markedly higher levels of phosphorylated-AMPK were observed in comparison with control cells transfected with GFP-scrambled guide RNA, which indicated that the presence of AGR2 may interfere with the metformin-dependent activation of AMPK. In addition, metformin in combination with 5-FU and oxaliplatin induced ROS production and attenuated autophagy. This effect was enhanced in AGR2-knockout cells.
- Klíčová slova
- AGR2, AMPK, ROS, autophagy, colorectal cancer, diabetes mellitus,
- Publikační typ
- časopisecké články MeSH
Human anterior gradient proteins AGR2 and AGR3 are overexpressed in a variety of adenocarcinomas and are often secreted in cancer patients' specimens, which suggests a role for AGR proteins in intra and extracellular compartments. Although these proteins exhibit high sequence homology, AGR2 is predominantly described as a pro-oncogene and a potential prognostic biomarker. However, little is known about the function of AGR3. Therefore, the aim of the present study was to investigate the role of AGR3 in breast cancer. The results demonstrated that breast cancer cells secrete AGR3. Furthermore, it was revealed that extracellular AGR3 (eAGR3) regulates tumor cell adhesion and migration. The current study indicated that the pharmacological and genetic perturbation of Src kinase signaling, through treatment with Dasatinib (protein kinase inhibitor) or investigating cells that express a dominant-negative form of Src, significantly abrogated eAGR3-mediated breast cancer cell migration. Therefore, the results indicated that eAGR3 may control tumor cell migration via activation of Src kinases. The results of the present study indicated that eAGR3 may serve as a microenvironmental signaling molecule in tumor-associated processes.
- Klíčová slova
- Src family kinases, Src phosphorylation, adhesion, anterior gradient proteins, cancer, migration, secreted protein disulfide isomerase family,
- Publikační typ
- časopisecké články MeSH