Nejvíce citovaný článek - PubMed ID 29536268
Plant growth promotion of Miscanthus × giganteus by endophytic bacteria and fungi on non-polluted and polluted soils
Modern technologies can satisfy human needs only with the use of large quantities of fertilizers and pesticides that are harmful to the environment. For this reason, it is possible to develop new technologies for sustainable agriculture. The process could be carried out by using endophytic microorganisms with a (possible) positive effect on plant vitality. Bacterial endophytes have been reported as plant growth promoters in several kinds of plants under normal and stressful conditions. In this study, isolates of bacterial endophytes from the roots and leaves of Miscanthus giganteus plants were tested for the presence of plant growth-promoting properties and their ability to inhibit pathogens of fungal origin. Selected bacterial isolates were able to solubilize inorganic phosphorus, fix nitrogen, and produce phytohormones, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and siderophore. Leaf bacterial isolate Pantoea ananat is 50 OL 2 had high production of siderophores (zone ≥ 5 mm), and limited phytohormone production, and was the only one to show ACC deaminase activity. The root bacterial isolate of Pseudomonas libanensis 5 OK 7A showed the best results in phytohormone production (N6-(Δ2-isopentenyl)adenine and indole-3-acetic acid, 11.7 and 12.6 ng·mL-1, respectively). Four fungal cultures-Fusarium sporotrichioides DBM 4330, Sclerotinia sclerotiorum SS-1, Botrytis cinerea DS 90 and Sphaerodes fimicola DS 93-were used to test the antifungal activity of selected bacterial isolates. These fungal cultures represent pathogenic families, especially for crops. All selected root endophyte isolates inhibited the pathogenic growth of all tested fungi with inhibition percentages ranging from 30 to 60%. Antifungal activity was also tested in two forms of immobilization of selected bacterial isolates: one in agar and the other on dextrin-coated cellulose carriers. These results demonstrated that the endophytic Pseudomonas sp. could be used as biofertilizers for crops.
- Klíčová slova
- ACC deaminase, phosphorus solubilization, phytohormone, siderophore,
- Publikační typ
- časopisecké články MeSH
Phoma stem canker (caused by the ascomycetes Leptosphaeria maculans and Leptosphaeria biglobosa) is an important disease of oilseed rape. Its effect on endophyte communities in roots and shoots and the potential of endophytes to promote growth and control diseases of oilseed rape (OSR) was investigated. Phoma stem canker had a large effect especially on fungal but also on bacterial endophyte communities. Dominant bacterial genera were Pseudomonas, followed by Enterobacter, Serratia, Stenotrophomonas, Bacillus and Staphylococcus. Achromobacter, Pectobacter and Sphingobacterium were isolated only from diseased plants, though in very small numbers. The fungal genera Cladosporium, Botrytis and Torula were dominant in healthy plants whereas Alternaria, Fusarium and Basidiomycetes (Vishniacozyma, Holtermaniella, Bjerkandera/Thanatephorus) occurred exclusively in diseased plants. Remarkably, Leptosphaeria biglobosa could be isolated in large numbers from shoots of both healthy and diseased plants. Plant growth promoting properties (antioxidative activity, P-solubilisation, production of phytohormones and siderophores) were widespread in OSR endophytes. Although none of the tested bacterial endophytes (Achromobacter, Enterobacter, Pseudomonas, Serratia and Stenotrophomonas) promoted growth of oilseed rape under P-limiting conditions or controlled Phoma disease on oilseed rape cotyledons, they significantly reduced incidence of Sclerotinia disease. In the field, a combined inoculum consisting of Achromobacter piechaudii, two pseudomonads and Stenotrophomonas rhizophila tendencially increased OSR yield and reduced Phoma stem canker.
- MeSH
- Achromobacter genetika růst a vývoj MeSH
- Ascomycota genetika růst a vývoj MeSH
- Brassica napus genetika růst a vývoj mikrobiologie MeSH
- endofyty genetika růst a vývoj MeSH
- kořeny rostlin genetika mikrobiologie MeSH
- mykobiom genetika MeSH
- nemoci rostlin genetika mikrobiologie MeSH
- odolnost vůči nemocem genetika MeSH
- Phoma genetika růst a vývoj MeSH
- Stenotrophomonas genetika růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Use of plant growth-promoting bacteria (PGPB) for cultivation of the biofuel crop Miscanthus × giganteus (Mxg) in post-military and post-mining sites is a promising approach for the bioremediation of soils contaminated by metals. In the present study, PGPB were isolated from contaminated soil and screened for tolerance against abiotic stresses caused by salinity, pH, temperature, and lead (Pb). Selected strains were further assessed and screened for plant growth-promoting attributes. The isolate showing the most potential, Bacillus altitudinis KP-14, was tested for enhancement of Mxg growth in contaminated soil under greenhouse conditions. It was found to be highly tolerant to diverse abiotic stresses, exhibiting tolerance to salinity (0-15%), pH (4-8), temperature (4-50 °C), and Pb (up to 1200 ppm). The association of B. altitudinis KP-14 with Mxg resulted in a significant (p ≤ 0.001) impact on biomass enhancement: the total shoot and dry root weights were significantly enhanced by 77.7% and 55.5%, respectively. The significant enhancement of Mxg biomass parameters by application of B. altitudinis KP-14 strongly supports the use of this strain as a biofertilizer for the improvement of plant growth in metal-contaminated soils.
- Klíčová slova
- Bacillus altitudinis, Miscanthus × giganteus, P-solubilization, abiotic stress, lead tolerance, post-mining metal-contaminated soil,
- Publikační typ
- časopisecké články MeSH