Bioprospecting of a Novel Plant Growth-Promoting Bacterium Bacillus Altitudinis KP-14 for Enhancing Miscanthus × giganteus Growth in Metals Contaminated Soil
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
U21-KLIP (no. CZ.02.2.69/0.0/0.0/16_027/0008492) & NATO SPS MYP G4687
Ministry of education, youth, and sports of the Czech Republic and partly supported by NATO
PubMed
32972004
PubMed Central
PMC7564662
DOI
10.3390/biology9090305
PII: biology9090305
Knihovny.cz E-zdroje
- Klíčová slova
- Bacillus altitudinis, Miscanthus × giganteus, P-solubilization, abiotic stress, lead tolerance, post-mining metal-contaminated soil,
- Publikační typ
- časopisecké články MeSH
Use of plant growth-promoting bacteria (PGPB) for cultivation of the biofuel crop Miscanthus × giganteus (Mxg) in post-military and post-mining sites is a promising approach for the bioremediation of soils contaminated by metals. In the present study, PGPB were isolated from contaminated soil and screened for tolerance against abiotic stresses caused by salinity, pH, temperature, and lead (Pb). Selected strains were further assessed and screened for plant growth-promoting attributes. The isolate showing the most potential, Bacillus altitudinis KP-14, was tested for enhancement of Mxg growth in contaminated soil under greenhouse conditions. It was found to be highly tolerant to diverse abiotic stresses, exhibiting tolerance to salinity (0-15%), pH (4-8), temperature (4-50 °C), and Pb (up to 1200 ppm). The association of B. altitudinis KP-14 with Mxg resulted in a significant (p ≤ 0.001) impact on biomass enhancement: the total shoot and dry root weights were significantly enhanced by 77.7% and 55.5%, respectively. The significant enhancement of Mxg biomass parameters by application of B. altitudinis KP-14 strongly supports the use of this strain as a biofertilizer for the improvement of plant growth in metal-contaminated soils.
Zobrazit více v PubMed
Ramakrishna W., Rathore P., Kumari R., Yadav R. Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration. Sci. Total Environ. 2020;711:135062. doi: 10.1016/j.scitotenv.2019.135062. PubMed DOI
Sharov P., Dowling R., Gogishvili M., Jones B., Caravanos J., McCartor A., Kashdan Z., Fuller R. The prevalence of toxic hotspots in former Soviet countries. Environ. Pollut. 2016;211:346–353. doi: 10.1016/j.envpol.2016.01.019. PubMed DOI
MAGIC Project Database, Marginal Land for Growing Industrial Crops (MAGIC) Project Database on MAGIC Decision Support System for Marginal Lands and Industrial Crops. [(accessed on 22 December 2019)];2018 Available online: http://iiasa-patial.maps.arcgis.com/apps/webappviewer/index.html?id=a813940c9ac14c298238c1742dd9dd3c.
Pidlisnyuk V., Stefanovska T., Lewis E.E., Erickson L.E., Davis L.C. Miscanthus as a Productive Biofuel Crop for Phytoremediation. Crit. Rev. Plant Sci. 2014;33:1–19. doi: 10.1080/07352689.2014.847616. DOI
Babu A.G., Shea P.J., Sudhakar D., Jung I.-B., Oh B.-T. Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J. Environ. Manag. 2015;151:160–166. doi: 10.1016/j.jenvman.2014.12.045. PubMed DOI
Tsao D.T. Overview of phytotechnologies. In: Tsao D.T., editor. Phytoremediation: Advances in Biochemical Engineering/Biotechnology. Springer; Berlin/Heidelberg, Germany: 2003. pp. 1–50. PubMed
Lewandowski I., Clifton-Brown J., Kiesel A., Hastings A., Iqbal Y. Miscanthus. In: Alexopoulou E., editor. Perennial Grasses for Bioenergy and Bioproducts. Academic Press; London, UK: 2018. pp. 35–60.
Pidlisnyuk V., Erickson L., Stefanovska T., Popelka J., Hettiarachchi G., Davis L., Trögl J. Potential phytomanagement of military polluted sites and biomass production using biofuel crop Miscanthus × giganteus. Environ. Pollut. 2019;249:330–337. doi: 10.1016/j.envpol.2019.03.018. PubMed DOI
Alasmary Z. Ph.D. Thesis. Kansas State University; Manhattan, KS, USA: 2020. [(accessed on 26 August 2020)]. Laboratory-to Field-Scale Investigations to Evaluate Phosphate Amendments and Miscanthus for Phytostabilization of Lead-Contaminated Military Sites.297p. Available online: https://hdl.handle.net/2097/40676.
Dražić G., Milovanović J., Stefanović S., Petrić I. Potential of Miscanthus × giganteus for heavy metals removing from Industrial desposol. Acta Reg. Environ. 2017;14:56–58.
Kharytonov M., Pidlisnyuk V., Stefanovska T., Babenko M., Martynova N., Rula I. The estimation of Miscanthus × giganteus adaptive potential for cultivation on the mining and post-mining lands in Ukraine. Environ. Sci. Pollut. Res. 2019;26:2974–2986. doi: 10.1007/s11356-018-3741-0. PubMed DOI
Nurzhanova A., Pidlisnyuk V., Abit K., Nurzhanov C., Kenessov B., Stefanovska T., Erickson L. Comparative assessment of using Miscanthus × giganteus for remediation of soils contaminated by heavy metals: A case of military and mining sites. Environ. Sci. Pollut. Res. Int. 2019;26:13320–13333. doi: 10.1007/s11356-019-04707-z. PubMed DOI
Tangahu B.V., Sheikh Abdullah S.R., Basri H., Idris M., Anuar N., Mukhlisin M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011;2011:939161. doi: 10.1155/2011/939161. DOI
Hu Y., Schäfer G., Duplay J., Kuhn N.J. Bioenergy crop induced changes in soil properties: A case study on Miscanthus fields in the Upper Rhine Region. PLoS ONE. 2018;13:e0200901. doi: 10.1371/journal.pone.0200901. PubMed DOI PMC
Antonkiewicz J., Kołodziej B., Bielińska E.J., Popławska A. The possibility of using sewage sludge for energy crop cultivation exemplified by reed canary grass and giant miscanthus. Soil Sci. Annu. 2019;70:21–33. doi: 10.2478/ssa-2019-0003. DOI
Han Y., Zhang L., Gu J., Zhao J., Fu J. Citric acid and EDTA on the growth, photosynthetic properties and heavy metal accumulation of Iris halophila Pall. cultivated in Pb mine tailings. Int. Biodeterior. Biodegrad. 2018;128:15–21. doi: 10.1016/j.ibiod.2016.05.011. DOI
Damodaran D., Vidya Shetty K., Raj Mohan B. Effect of chelaters on bioaccumulation of Cd (II), Cu (II), Cr (VI), Pb (II) and Zn (II) in Galerina vittiformis from soil. Int. Biodeterior. Biodegrad. 2013;85:182–188. doi: 10.1016/j.ibiod.2013.05.031. DOI
Nebeská D., Pidlisnyuk V., Stefanovska T., Trögl J., Shapoval P., Popelka J., Černý J., Medkow A., Kvak V., Malinská H. Impact of plant growth regulators and soil properties on Miscanthus × giganteus biomass parameters and uptake of metals in military soils. Rev. Environ. Health. 2019;34:283–291. doi: 10.1515/reveh-2018-0088. PubMed DOI
Khan W.U., Ahmad S.R., Yasin N.A., Ali A., Ahmad A. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils. Int. J. Phytoremediat. 2017;19:514–521. doi: 10.1080/15226514.2016.1254154. PubMed DOI
Choudhary D.K., Varma A., Tuteja N. Plant-Microbe Interaction: An Approach to Sustainable Agriculture. Springer; Berlin/Heidelberg, Germany: 2016. DOI
Firmin S., Labidi S., Fontaine J., Laruelle F., Tisserant B., Nsanganwimana F., Pourrut B., Dalpé Y., Grandmougin A., Douay F., et al. Arbuscular mycorrhizal fungal inoculation protects Miscanthus × giganteus against trace element toxicity in a highly metal-contaminated site. Sci. Total Environ. 2015;527–528:91–99. doi: 10.1016/j.scitotenv.2015.04.116. PubMed DOI
Li D., Voigt T.B., Kent A.D. Plant and soil effects on bacterial communities associated with Miscanthus × giganteus rhizosphere and rhizomes. GCB Bioenergy. 2016;8:183–193. doi: 10.1111/gcbb.12252. DOI
dos Santos J.J., Maranho L.T. Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: A review. J. Environ. Manag. 2018;210:104–113. doi: 10.1016/j.jenvman.2018.01.015. PubMed DOI
Rohrbacher F., St-Arnaud M. Root exudation: The ecological driver of hydrocarbon rhizoremediation. Agronomy. 2016;6:19. doi: 10.3390/agronomy6010019. DOI
Goswami M., Deka S. Plant growth-promoting rhizobacteria—Alleviators of abiotic stresses in soil: A review. Pedosphere. 2020;30:40–61. doi: 10.1016/S1002-0160(19)60839-8. DOI
Jamali H., Sharma A., Roohi, Srivastava A. Biocontrol potential of Bacillus subtilis RH5 against sheath blight of rice caused by Rhizoctonia Solani. J. Basic Microbiol. 2019:268–280. doi: 10.1002/jobm.201900347. PubMed DOI
Goswami D., Thakker J.N., Dhandhukia P.C. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food Agric. 2016;2 doi: 10.1080/23311932.2015.1127500. DOI
Kasim W.A., Gaafar R.M., Abou-Ali R.M., Omar M.N., Hewait H.M. Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann. Agric. Sci. 2016;61:217–227. doi: 10.1016/j.aoas.2016.07.003. DOI
Albdaiwi R.N., Khyami-Horani H., Ayad J.Y., Alananbeh K.M., Al-Sayaydeh R. Isolation and characterization of halotolerant plant growth promoting rhizobacteria from durum wheat (Triticum turgidum subsp. durum) cultivated in saline areas of the dead sea region. Front. Microbiol. 2019;10 doi: 10.3389/fmicb.2019.01639. PubMed DOI PMC
Kumar S., Chauhan P.S., Agrawal L., Raj R., Srivastava A., Gupta S., Mishra S.K., Yadav S., Singh P.C., Raj S.K. Paenibacillus lentimorbus inoculation enhances tobacco growth and extenuates the virulence of Cucumber mosaic virus. PLoS ONE. 2016;11:e0149980. doi: 10.1371/journal.pone.0149980. PubMed DOI PMC
Diyansah B., Aini L.Q., Hadiastono T. The effect of PGPR (plant growth promoting rhizobacteria) Pseudomonas fluorescens and Bacillus subtilis on leaf mustard plant (Brassica juncea L.) infected by TuMv (Turnip Mosaic Virus) J. Trop. Plant Prot. 2017;1:30–38.
Ledger T., Poupin M.J., Timmermann T., Stuardo M., Gonzalez B., Little C. PGPR compositions and methods for improved cultivation of tomato and potato species. US10513681B2. U.S. Patent. 2019 Dec 24;
Cisternas-Jamet J., Salvatierra-Martínez R., Vega-Gálvez A., Stoll A., Uribe E., Goñi M.G. Biochemical composition as a function of fruit maturity stage of bell pepper (Capsicum annum) inoculated with Bacillus amyloliquefaciens. Sci. Hortic. 2020;263:109107. doi: 10.1016/j.scienta.2019.109107. DOI
Marastoni L., Pii Y., Maver M., Valentinuzzi F., Cesco S., Mimmo T. Role of Azospirillum brasilense in triggering different Fe chelate reductase enzymes in cucumber plants subjected to both nutrient deficiency and toxicity. Plant Physiol. Biochem. 2019;136:118–126. doi: 10.1016/j.plaphy.2019.01.013. PubMed DOI
Schmidt C.S., Mrnka L., Frantík T., Lovecká P., Vosátka M. Plant growth promotion of Miscanthus × giganteus by endophytic bacteria and fungi on non-polluted and polluted soils. World J. Microbiol. Biotechnol. 2018;34:48. doi: 10.1007/s11274-018-2426-7. PubMed DOI
Begum N., Hu Z., Cai Q., Lou L. Influence of PGPB inoculation on HSP70 and HMA3 gene expression in switchgrass under cadmium stress. Plants. 2019;8:504. doi: 10.3390/plants8110504. PubMed DOI PMC
USEPA . Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. SW-846 Test Method 6200-2007; Washington, DC, USA: 2007. United States Standard.
Gustaw K., Michalak M., Polak-Berecka M., Waśko A. Isolation and characterization of a new fructophilic Lactobacillus plantarum FPL strain from honeydew. Ann. Microbiol. 2018;68:459–470. doi: 10.1007/s13213-018-1350-2. PubMed DOI PMC
Galkiewicz J.P., Kellogg C.A. Cross-kingdom amplification using bacteria-specific primers: Complications for studies of coral microbial ecology. Appl. Environ. Microbiol. 2008;74:7828–7831. doi: 10.1128/AEM.01303-08. PubMed DOI PMC
Huerta-Cepas J., Serra F., Bork P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 2016;33:1635–1638. doi: 10.1093/molbev/msw046. PubMed DOI PMC
Bruno L.B., Karthik C., Ma Y., Kadirvelu K., Freitas H., Rajkumar M. Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria. Chemosphere. 2020;244:125521. doi: 10.1016/j.chemosphere.2019.125521. PubMed DOI
Arif M.S., Yasmeen T., Shahzad S.M., Riaz M., Rizwan M., Iqbal S., Asif M., Soliman M.H., Ali S. Lead toxicity induced phytotoxic effects on mung bean can be relegated by lead tolerant Bacillus subtilis (PbRB3) Chemosphere. 2019;234:70–80. doi: 10.1016/j.chemosphere.2019.06.024. PubMed DOI
Nautiyal C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999;170:265–270. doi: 10.1111/j.1574-6968.1999.tb13383.x. PubMed DOI
Rana A., Saharan B., Joshi M., Prasanna R., Kumar K., Nain L. Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann. Microbiol. 2011;61:893–900. doi: 10.1007/s13213-011-0211-z. DOI
Jackson M. Soil Chemical Analysis. Prentice Hall Inc.; Englewood Cliffs, NJ, USA: 1967. pp. 331–334.
Hartmann A., Singh M., Klingmüller W. Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can. J. Microbiol. 1983;29:916–923. doi: 10.1139/m83-147. DOI
Schwyn B., Neilands J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987;160:47–56. doi: 10.1016/0003-2697(87)90612-9. PubMed DOI
Bakker A.W., Schippers B. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation. Soil Biol. Biochem. 1987;19:451–457. doi: 10.1016/0038-0717(87)90037-X. DOI
Jacobson C.B., Pasternak J., Glick B.R. Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 1994;40:1019–1025. doi: 10.1139/m94-162. DOI
Li H.-B., Singh R.K., Singh P., Song Q.-Q., Xing Y.-X., Yang L.-T., Li Y.-R. Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere. Front. Microbiol. 2017;8 doi: 10.3389/fmicb.2017.01268. PubMed DOI PMC
Dye D. The inadequacy of the usual determinative tests for the identification of Xanthomonas spp. N. Z. J. Sci. 1962;5:393–416.
Shende S., Apte R., Singh T. Influence of Azotobacter on germination of rice and cotton seeds [India] Curr. Sci. 1977;46:675–676.
Smith J.L., Doran J.W. Measurement and use of pH and electrical conductivity for soil quality analysis. Methods Assess. Soil Qual. 1997;49:169–185.
Couto W. Handbook of Agricultural Productivity. CRC Press; Boca Raton, FL, USA: 2018. Soil pH and plant productivity; pp. 71–84.
DSTU 4729-2007 . The Method for Determination of the Nitrate and Ammonium Nitrogen. National Standard of Ukraine. Quality of Soil; Kyiv, Ukraine: 2008. p. 14.
Agegnehu G., Nelson P.N., Bird M.I. Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil Till. Res. 2016;160:1–13. doi: 10.1016/j.still.2016.02.003. DOI
MECR . Decree No. 153/2016. Volume 153 Ministry of the Environment of the Czech Republic (MECR); Prague, Czech Republic: 2016. Laying down the details of agricultural land quality protection and amending Decree No. 13/1994 Coll., Amending certain details of agricultural land resources protection.
Han M., Kim Y., Koo B.C., Choi G.W. Bioethanol production by Miscanthus as a lignocellulosic biomass: Focus on high efficiency conversion to glucose and ethanol. Bioresources. 2011;6:1939–1953.
Cosentino S., Scordia D., Testa G., Monti A., Alexopouloy E., Chirtou M. The importance of perennial grasses as a feedstock for bioenergy and bioproducts. In: Alexopoulou E., editor. Perennial Grasses for Bioenergy and Bioproducts. Academic Press; London, UK: 2018. pp. 1–33.
Park H.J., Oh S.W., Wen M.Y. Manufacture and properties of Miscanthus–wood particle composite boards. J. Wood Sci. 2012;58:459–464. doi: 10.1007/s10086-012-1262-x. DOI
Villaverde J.J., Ligero P., Vega A.D. Miscanthus × giganteus as a source of biobased products through organosolv fractionation: A mini review. Open Agric. J. 2010:4. doi: 10.2174/1874331501004010102. DOI
Bocianowski J., Fabicial E., Joachimiak K., Wojech R., Wojciak A. Miscanthus × giganteus as an auxiliary raw material in NSSC pulp production. Cell. Chem. Technol. 2019;53:1–9. doi: 10.35812/CelluloseChemTechnol.2019.53.27. DOI
Sunar K., Dey P., Chakraborty U., Chakraborty B. Biocontrol efficacy and plant growth promoting activity of Bacillus altitudinis isolated from Darjeeling hills, India. J. Basic Microbiol. 2015;55:91–104. doi: 10.1002/jobm.201300227. PubMed DOI
Mukherjee P., Mitra A., Roy M. Halomonas rhizobacteria of Avicennia marina of Indian sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production. Front. Microbiol. 2019;10:1207. doi: 10.3389/fmicb.2019.01207. PubMed DOI PMC
Kamaruzzaman M.A., Abdullah S.R.S., Hasan H.A., Hassan M., Othman A.R., Idris M. Characterisation of Pb-resistant plant growth-promoting rhizobacteria (PGPR) from Scirpus grossus. Biocatal. Agric. Biotechnol. 2020;23:101456. doi: 10.1016/j.bcab.2019.101456. DOI
Kumar V., Singh S., Singh J., Upadhyay N. Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils. Bull. Environ. Contam. Toxicol. 2015;94:807–814. doi: 10.1007/s00128-015-1523-7. PubMed DOI
Singh R.P., Jha P.N. A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum) Front. Plant Sci. 2016;7:1890. doi: 10.3389/fpls.2016.01890. PubMed DOI PMC
Orhan F. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum) Braz. J. Microbiol. 2016;47:621–627. doi: 10.1016/j.bjm.2016.04.001. PubMed DOI PMC
McBride M.B., Kelch S.E., Schmidt M.P., Sherpa S., Martinez C.E., Aristilde L. Oxalate-enhanced solubility of lead (Pb) in the presence of phosphate: PH control on mineral precipitation. Environ. Sci. Process. Impacts. 2019;21:738–747. doi: 10.1039/C8EM00553B. PubMed DOI
Kour D., Rana K.L., Sheikh I., Kumar V., Yadav A.N., Dhaliwal H.S., Saxena A.K. Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc. Natl. Acad. Sci. India Sec. B Biol. Sci. 2019 doi: 10.1007/s40011-019-01151-4. DOI
Chennappa G., Udaykumar N., Vidya M., Nagaraja H., Amaresh Y.S., Sreenivasa M.Y. Chapter 19—Azotobacter—A natural resource for bioremediation of toxic pesticides in soil ecosystems. In: Singh J.S., Singh D.P., editors. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier; Amsterdam, The Netherlands: 2019. pp. 267–279. DOI
Glick B.R., Jacobson C.B., Schwarze M.M., Pasternak J. 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can. J. Microbiol. 1994;40:911–915. doi: 10.1139/m94-146. DOI
Zhang S., Gan Y., Xu B. Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biol. 2019;19:22. doi: 10.1186/s12870-018-1618-5. PubMed DOI PMC
Tahir M., Ahmad I., Shahid M., Shah G.M., Farooq A.B.U., Akram M., Tabassum S.A., Naeem M.A., Khalid U., Ahmad S., et al. Regulation of antioxidant production, ion uptake and productivity in potato (Solanum tuberosum L.) plant inoculated with growth promoting salt tolerant Bacillus strains. Ecotox. Environ. Saf. 2019;178:33–42. doi: 10.1016/j.ecoenv.2019.04.027. PubMed DOI
Shivaji S., Chaturvedi P., Suresh K., Reddy G.S.N., Dutt C.B.S., Wainwright M., Narlikar J.V., Bhargava P.M. Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int. J. Syst. Evol. Microbiol. 2006;56:1465–1473. doi: 10.1099/ijs.0.64029-0. PubMed DOI
Reina-Bueno M., Argandoña M., Nieto J.J., Hidalgo-García A., Iglesias-Guerra F., Delgado M.J., Vargas C. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol. 2012;12:207. doi: 10.1186/1471-2180-12-207. PubMed DOI PMC
Baker A.J.M., McGrath S.P., Reeve R.D., Smith J.A.C. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N., Banuelos G.S., editors. Phytoremediation of Contaminated Soil and Water. Lewis Publishers, CRC Press; Boca-Raton, FL, USA: 2000. pp. 85–107.
Khezri M., Jouzani G.S., Ahmadzadeh M. Fusarium culmorum affects expression of biofilm formation key genes in Bacillus subtilis. Braz. J. Microbiol. 2016;47:47–54. doi: 10.1016/j.bjm.2015.11.019. PubMed DOI PMC
Fira D., Dimkić I., Berić T., Lozo J., Stanković S. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 2018;285:44–55. doi: 10.1016/j.jbiotec.2018.07.044. PubMed DOI
Toral L., Rodríguez M., Béjar V., Sampedro I. Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.01315. PubMed DOI PMC
Woyessa D., Assefa F. Effects of plant growth promoting rhizobacteria on growth and yield of tef (Eragrostis tef Zucc. Trotter) under greenhouse condition. Res. J. Microbiol. 2011;6:343–355. doi: 10.3923/jm.2011.343.355. DOI
Sorty A.M., Meena K.K., Choudhary K., Bitla U.M., Minhas P.S., Krishnani K.K. Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl. Biochem. Biotechnol. 2016;180:872–882. doi: 10.1007/s12010-016-2139-z. PubMed DOI
Kang S.-M., Khan A.L., Waqas M., Asaf S., Lee K.-E., Park Y.-G., Kim A.-Y., Khan M.A., You Y.-H., Lee I.-J. Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. J. Plant Interact. 2019;14:416–423. doi: 10.1080/17429145.2019.1640294. DOI
Mukhtar S., Zareen M., Khaliq Z., Mehnaz S., Malik K.A. Phylogenetic analysis of halophyte-associated rhizobacteria and effect of halotolerant and halophilic phosphate-solubilizing biofertilizers on maize growth under salinity stress conditions. J. Appl. Microbiol. 2020;128:556–573. doi: 10.1111/jam.14497. PubMed DOI
Fei H., Crouse M., Papadopoulos Y.A., Vessey J.K. Improving biomass yield of giant Miscanthus by application of beneficial soil microbes and a plant biostimulant. Can. J. Plant Sci. 2019;100:29–39. doi: 10.1139/cjps-2019-0012. DOI