PREMISE: Despite the high functional importance of endophytes, we still have limited understanding of the biotic and abiotic factors that influence colonization of plant hosts along major ecological gradients and lack quantitative estimates of their colonization extent. In this study, we hypothesized that the developmental stage of the ecosystem will affect the levels of bacterial and fungal endophytic assemblages in the foliar endosphere. METHODS: We quantified levels of bacterial and fungal endophytes in leaves of four plant hosts at four stages of vegetation succession using an optimized qPCR protocol with bacteria-specific 16S and fungi-targeting primers. RESULTS: (1) The ecosystem developmental stage did not have a significant effect on the colonization levels of bacterial or fungal endophytes. (2) Colonization levels by bacterial and fungal endophytes were governed by different mechanisms. (3) Endophytic colonization levels and their relationship to foliar tissue stoichiometry were highly host specific. CONCLUSIONS: Quantifying colonization levels is important in the study of endophytic ecology, and the fast, relatively low-cost qPCR-based method can supply useful ecological information, which can significantly enhance the interpretation potential of descriptive data generated, for example, by next-generation sequencing.
- Keywords
- cell counts, ecological succession, foliar endophyte, fungi‐bacteria ratios, qPCR, soil chronosequence,
- MeSH
- Bacteria * genetics growth & development isolation & purification MeSH
- Ecosystem MeSH
- Endophytes * physiology genetics MeSH
- Host Specificity * MeSH
- Fungi * genetics isolation & purification physiology MeSH
- Real-Time Polymerase Chain Reaction methods MeSH
- Plant Leaves * microbiology MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Endophytic fungi (EF) reside within plants without causing harm and provide benefits such as enhancing nutrients and producing bioactive compounds, which improve the medicinal properties of host plants. Selecting plants with established medicinal properties for studying EF is important, as it allows a deeper understanding of their influence. Therefore, the study aimed to investigate the impact of EF after inoculating the medicinal plant Perilla frutescens, specifically focusing on their role in enhancing medicinal properties. RESULTS: In the current study, the impact of two EF i.e., Irpex lenis and Schizophyllum commune isolated from A. bracteosa was observed on plant Perilla frutescens leaves after inoculation. Plants were divided into four groups i.e., group A: the control group, group B: inoculated with I. lenis; group C: inoculated with S. commune and group D: inoculated with both the EF. Inoculation impact of I. lenis showed an increase in the concentration of chlorophyll a (5.32 mg/g), chlorophyll b (4.46 mg/g), total chlorophyll content (9.78 mg/g), protein (68.517 ± 0.77 mg/g), carbohydrates (137.886 ± 13.71 mg/g), and crude fiber (3.333 ± 0.37%). Furthermore, the plants inoculated with I. lenis showed the highest concentrations of P (14605 mg/kg), Mg (4964.320 mg/kg), Ca (27389.400 mg/kg), and Mn (86.883 mg/kg). The results of the phytochemical analysis also indicated an increased content of total flavonoids (2.347 mg/g), phenols (3.086 mg/g), tannins (3.902 mg/g), and alkaloids (1.037 mg/g) in the leaf extract of P. frutescens inoculated with I. lenis. Thus, overall the best results of inoculation were observed in Group B i.e. inoculated with I. lenis. GC-MS analysis of methanol leaf extract showed ten bioactive constituents, including 9-Octadecenoic acid (Z)-, methyl ester, and hexadecanoic acid, methyl ester as major constituents found in all the groups of P. frutescens leaves. The phenol (gallic acid) and flavonoids (rutin, kaempferol, and quercetin) were also observed to increase after inoculation by HPTLC analysis. The enhancement in the phytochemical content was co-related with improved anti-oxidant potential which was analyzed by DPPH (% Inhibition: 83.45 µg/ml) and FRAP (2.980 µM Fe (II) equivalent) assay as compared with the control group. CONCLUSION: Inoculation with I. lenis significantly enhances the uptake of nutritional constituents, phytochemicals, and antioxidant properties in P. frutescens, suggesting its potential to boost the therapeutic properties of host plants.
- Keywords
- Endophytic fungi, Gene sequencing, Inoculation, Isolation, Nutrient up-take, Phytoconstituent profiling,
- MeSH
- Antioxidants * metabolism MeSH
- Chlorophyll metabolism MeSH
- Endophytes * metabolism MeSH
- Phytochemicals * chemistry metabolism pharmacology MeSH
- Plant Leaves * microbiology chemistry MeSH
- Perilla frutescens * chemistry metabolism MeSH
- Schizophyllum * metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants * MeSH
- Chlorophyll MeSH
- Phytochemicals * MeSH
This study profiled the various endophytic fungi isolated from the orchid Cymbidium sp. and their L-asparaginase production and antioxidant potential. The L-asparaginase production was first screened through qualitative plate screening then quantified by the Nesslerization method. The antioxidant potential was quantified via the 2,2-diphenyl-1-picrylhydrazyl assay. A total of 30 endophytic fungi were isolated and all fungal isolates exhibited various degrees of radical scavenging activities (45.28% to 76.4%). Isolate Lasiodiplodia theobromae (C11) had the highest antioxidant capacity, represented by the lowest IC50 value (5.75 mg/mL) and highest ascorbic acid equivalent antioxidant capacity value (12.17 mg/g). Additionally, 16 isolates produced L-asparaginase (53.33%), which includes primarily species of Fusarium proliferatum, Fusarium fujikuroi, Fusarium incarnatum, and Fusarium oxysporum. A new isolate has also been discovered from Cymbidium orchid, Buergenerula spartinae (C28), which showed the highest L-asparaginase activity (1.736 unit/mL). These findings supported the postulation that medicinal species of Orchidaceae such as Cymbidium sp. harbor endophytes that are producers of L-asparaginase and antioxidants with various potential applications.
- Keywords
- Cymbidium, Antioxidant, Bioactive compounds, Fungal endophytes, L-asparaginase, Orchids,
- MeSH
- Antioxidants * metabolism MeSH
- Asparaginase * metabolism MeSH
- Endophytes * isolation & purification metabolism enzymology classification MeSH
- Fusarium enzymology metabolism isolation & purification MeSH
- Phylogeny MeSH
- Fungi classification isolation & purification enzymology MeSH
- Orchidaceae * microbiology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants * MeSH
- Asparaginase * MeSH
Rocky habitats, globally distributed ecosystems, harbour diverse biota, including numerous endemic and endangered species. Vascular plants thriving in these environments face challenging abiotic conditions, requiring diverse morphological and physiological adaptations. Their engagement with the surrounding microbiomes is, however, equally vital for their adaptation, fitness, and long-term survival. Nevertheless, there remains a lack of understanding surrounding this complex interplay within this fascinating biotic ecosystem. Using microscopic observations and metabarcoding analyses, we examined the fungal abundance and diversity in the root system of the rock-dwelling West Carpathian endemic shrub, Daphne arbuscula (Thymelaeaceae). We explored the diversification of root-associated fungal communities in relation to microclimatic variations across the studied sites. We revealed extensive colonization of the Daphne roots by diverse taxonomic fungal groups attributed to different ecological guilds, predominantly plant pathogens, dark septate endophytes (DSE), and arbuscular mycorrhizal fungi (AMF). Notably, differences in taxonomic composition and ecological guilds emerged between colder and warmer microenvironments. Apart from omnipresent AMF, warmer sites exhibited a prevalence of plant pathogens, while colder sites were characterized by a dominance of DSE. This mycobiome diversification, most likely triggered by the environment, suggests that D. arbuscula populations in warmer areas may be more vulnerable to fungal diseases, particularly in the context of global climate change.
- Keywords
- Carpathians, amplicon sequencing, arbuscular mycorrhiza, dark septate endophytes, endemism, fungal pathogens,
- MeSH
- Daphne * microbiology genetics MeSH
- Ecosystem * MeSH
- Endophytes genetics MeSH
- Adaptation, Physiological genetics MeSH
- Fungi classification genetics MeSH
- Plant Roots * microbiology MeSH
- Mycobiome genetics MeSH
- Mycorrhizae * genetics classification MeSH
- Publication type
- Journal Article MeSH
Three endophytic bacteria, namely BvV, BvP and BvL, were newly isolated from the root nodules of bean, pea and lentil plants respectively cultivated in Mascara the northwest of Algeria, and identified by 16S ribosomal RNA gene sequencing as Brevundimonas naejangsanensis. These strains were able to produce hydrolytic enzymes and hydrogen cyanide. All strains produced a growth-promoting hormone, indole acetic acid, varying in concentration from 83.2 to 171.7 µg/mL. The phosphate solubilizing activity of BvV, BvP and BvL varied from 25.5 to 42.02 µg/mL for tricalcium phosphate. The three antagonistic Brevundimonas spp. showed in vitro the most inhibitory effect on mycelial growth of Fusarium redolens FRC (from 78.33 to 85.55%). Strain BvV, BvP and BvL produced also volatile metabolites which inhibited mycelial FRC growth up to 39.2%. All strains showed significant disease reduction in pot experiments. Chickpea Fusarium yellows severity caused by FRC was reduced significantly from 89.3 to 96.6% in the susceptible cultivar ILC 482 treated with antagonistic B. naejangsanensis. The maximum stimulatory effect on chickpea plants growth was observed by inoculation of strain BvV. This treatment resulted in a 7.40-26.21% increase in shoot height as compared to the control plants. It is concluded that the endophytic bacterial strains of B. naejangsanensis having different plant growth promoting (PGP) activities can be considered as beneficial microbes for sustainable agriculture. To our knowledge, this is the first report to use B. naejangsanensis strains as a new biocontrol agent against F. redolens, a new pathogen of chickpea plants causing Fusarium yellows disease in Algeria.
- Keywords
- Brevundimonas naejangsanensis, Fusarium redolens, Antagonistic activities, Biocontrol, Plant growth promoting,
- MeSH
- Antibiosis * MeSH
- Biological Control Agents pharmacology MeSH
- Burkholderiales genetics growth & development metabolism MeSH
- Cicer * microbiology growth & development MeSH
- Endophytes isolation & purification genetics classification physiology metabolism MeSH
- Phosphates metabolism MeSH
- Fusarium * growth & development physiology genetics MeSH
- Phylogeny MeSH
- Plant Roots microbiology MeSH
- Indoleacetic Acids metabolism MeSH
- Plant Diseases * microbiology prevention & control MeSH
- Plant Growth Regulators metabolism MeSH
- RNA, Ribosomal, 16S * genetics MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Algeria MeSH
- Names of Substances
- Biological Control Agents MeSH
- Phosphates MeSH
- indoleacetic acid MeSH Browser
- Indoleacetic Acids MeSH
- Plant Growth Regulators MeSH
- RNA, Ribosomal, 16S * MeSH
Grey mold, caused by Botrytis cinerea, is a widespread and harmful disease of tomato. Biocontrol agents derived from endophytic bacteria are known to hold great potential for inhibition of phytopathogen. We conducted this study to explore the tomato endophytic strains with inhibition activity against B. cinerea. Endophytic strain Bacillus velezensis FQ-G3 exhibited excellent inhibition activity against B. cinerea. Inhibitory effects against B. cinerea were investigated both in vitro and in vivo. The in vitro assays displayed that FQ-G3 could significantly inhibit mycelia growth with inhibition rate of 85.93%, and delay conidia germination of B. cinerea. Tomato fruit inoculated with B. velezensis FQ-G3 revealed lower grey mold during treatment. The antifungal activity was attributed to activation of defense-related enzymes, as evidenced by the higher levels of peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase in tomatoes after inoculation. In addition, scanning electron microscope was applied to elucidate the interaction between endophytes and pathogen, and bacterial colonization and antibiosis appeared to be the underlying mechanisms that FQ-G3 could suppress growth of B. cinerea. Collectively, our present results suggested that FQ-G3 may potentially be useful as a biocontrol agent in postharvest tomatoes.
- Keywords
- Bacillus velezensis, Botrytis cinerea, Antifungal activity, Endophyte, Postharvest,
- MeSH
- Bacillus * MeSH
- Botrytis * MeSH
- Endophytes MeSH
- Plant Diseases prevention & control microbiology MeSH
- Solanum lycopersicum * MeSH
- Publication type
- Journal Article MeSH
Endophytic microbes are plant-associated microorganisms that reside in the interior tissue of plants without causing damage to the host plant. Endophytic microbes can boost the availability of nutrient for plant by using a variety of mechanisms such as fixing nitrogen, solubilizing phosphorus, potassium, and zinc, and producing siderophores, ammonia, hydrogen cyanide, and phytohormones that help plant for growth and protection against various abiotic and biotic stresses. The microbial endophytes have attained the mechanism of producing various hydrolytic enzymes such as cellulase, pectinase, xylanase, amylase, gelatinase, and bioactive compounds for plant growth promotion and protection. The efficient plant growth promoting endophytic microbes could be used as an alternative of chemical fertilizers for agro-environmental sustainability. Endophytic microbes belong to different phyla including Euryarchaeota, Ascomycota, Basidiomycota, Mucoromycota, Firmicutes, Proteobacteria, and Actinobacteria. The most pre-dominant group of bacteria belongs to Proteobacteria including α-, β-, γ-, and δ-Proteobacteria. The least diversity of the endophytic microbes have been revealed from Bacteroidetes, Deinococcus-Thermus, and Acidobacteria. Among reported genera, Achromobacter, Burkholderia, Bacillus, Enterobacter, Herbaspirillum, Pseudomonas, Pantoea, Rhizobium, and Streptomyces were dominant in most host plants. The present review deals with plant endophytic diversity, mechanisms of plant growth promotion, protection, and their role for agro-environmental sustainability. In the future, application of endophytic microbes have potential role in enhancement of crop productivity and maintaining the soil health in sustainable manner.
- Keywords
- Abiotic stress, Agricultural sustainability, Endophytes, Plant growth promotion,
- MeSH
- Ascomycota * MeSH
- Bacillus * MeSH
- Bacteria genetics MeSH
- Basidiomycota * MeSH
- Endophytes MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Microdochium bolleyi is a fungal endophyte of cereals and grasses proposed as an ideal model organism for studying plant-endophyte interactions. A qPCR-based diagnostic assay was developed to detect M. bolleyi in wheat and Brachypodium distachyon tissues using the species-specific primers MbqITS derived from the ITS of the ribosomal gene. Specificity was tested against 20 fungal organisms associated with barley and wheat. Colonization dynamics, endophyte distribution in the plant, and potential of the seed transmission were analyzed in the wheat and model plant B. distachyon. The colonization of plants by endophyte starts from the germinating seed, where the seed coats are first strongly colonized, then the endophyte spreads to the adjacent parts, crown, roots near the crown, and basal parts of the stem. While in the lower distal parts of roots, the concentration of M. bolleyi DNA did not change significantly in successive samplings (30, 60, 90, 120, and 150 days after inoculation), there was a significant increase over time in the roots 1 cm under crown, crowns and stem bases. The endophyte reaches the higher parts of the base (2-4 cm above the crown) 90 days after sowing in wheat and 150 days in B. distachyon. The endophyte does not reach both host species' leaves, peduncles, and ears. Regarding the potential for seed transmission, endophyte was not detected in harvested grains of plants with heavily colonized roots. Plants grown from seeds derived from parental plants heavily colonized by endophyte did not exhibit any presence of the endophyte, so transmission by seeds was not confirmed. The course of colonization dynamics and distribution in the plant was similar for both hosts tested, with two differences: the base of the wheat stem was colonized earlier, but B. distachyon was occupied more intensively and abundantly than wheat. Thus, the designed species-specific primers could detect and quantify the endophyte in planta.
- MeSH
- Ascomycota * genetics MeSH
- Endophytes genetics MeSH
- Plant Leaves microbiology MeSH
- Seeds microbiology MeSH
- Publication type
- Journal Article MeSH
This paper represents the results of screening a diversity of fungal endophytes associated with Vitis vinifera leaves and canes in the Czech Republic. The characterization of strains is based on morphological and phylogenetic analyses of ITS, EF1α and TUB2 sequence data. Our strain selection covers 16 species and seven orders belonging to Ascomycota and Basidiomycota. Together with ubiquitous fungi, we report on several poorly known plant-associated fungi, Angustimassarina quercicola (= A. coryli, a synonym proposed in this study) and Pleurophoma pleurospora. Other species, such as Didymella negriana, D. variabilis, Neosetophoma sp. (species identical or sister to N. rosae), Phragmocamarosporium qujingensis and Sporocadus rosigena, have so far been little known and rarely found, but are frequent on V. vinifera in different parts of the world and obviously belong to a microbiota with a strong preference for this plant. Detailed taxonomical identification allowed us to identify species with apparent stable associations with V. vinifera, for which further interactions with V. vinifera can be expected. Our study is the first to focus on V. vinifera endophytes in Central Europe and expands the knowledge about their taxonomy, ecology and geography.
- Keywords
- Angustimassarina, Didymella, Ecology, Endophytes, Host preference, Neosetophoma, Phragmocamarosporium qujingensis, Sporocadus, Vitis vinifera,
- MeSH
- Basidiomycota * MeSH
- Endophytes genetics MeSH
- Phylogeny MeSH
- Fungi MeSH
- Vitis * microbiology MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
Core Ericaceae produce delicate hair roots with inflated rhizodermal cells that host plethora of fungal symbionts. These poorly known mycobionts include various endophytes, parasites, saprobes, and the ericoid mycorrhizal (ErM) fungi (ErMF) that form the ErM symbiosis crucial for the fitness of their hosts. Using microscopy and high-throughput sequencing, we investigated their structural and molecular diversity in 14 different host × site combinations in Northern Bohemia (Central Europe) and Argentine Patagonia (South America). While we found typical ericoid mycorrhiza in all combinations, we did not detect ectomycorrhiza and arbuscular mycorrhiza. Superficial mantles of various thickness formed by non-clamped hyphae were observed in all combinations except Calluna vulgaris from N. Bohemia. Some samples contained frequent intercellular hyphae while others possessed previously unreported intracellular haustoria-like structures linked with intracellular hyphal coils. The 711 detected fungal OTU were dominated by Ascomycota (563) and Basidiomycota (119), followed by four other phyla. Ascomycetes comprised Helotiales (255), Pleosporales (53), Chaetothyriales (42), and other 19 orders, while basidiomycetes Sebacinales (42), Agaricales (28), Auriculariales (7), and other 14 orders. While many dominant OTU from both hemispheres lacked close relatives in reference databases, many were very similar to identical to unnamed sequences from around the world. On the other hand, several significant ericaceous mycobionts were absent in our dataset, incl. Cairneyella, Gamarada, Kurtia, Lachnum, and Leohumicola. Most of the detected OTU could not be reliably linked to a particular trophic mode, and only two could be reliably assigned to the archetypal ErMF Hyaloscypha hepaticicola. Probable ErMF comprised Hyaloscypha variabilis and Oidiodendron maius, both detected only in N. Bohemia. Possible ErMF comprised sebacinoid fungi and several unnamed members of Hyaloscypha s. str. While H. hepaticicola was dominant only in C. vulgaris, this model ErM host lacked O. maius and sebacinoid mycobionts. Hyaloscypha hepaticicola was absent in two and very rare in six combinations from Patagonia. Nine OTU represented dark septate endophytes from the Phialocephala fortinii s. lat.-Acephala applanata species complex, including the most abundant OTU (the only detected in all combinations). Statistical analyses revealed marked differences between N. Bohemia and Patagonia, but also within Patagonia, due to the unique community detected in a Valdivian temperate rainforest. Our results show that the ericaceous hair roots may host diverse mycobionts with mostly unknown functions and indicate that many novel ErMF lineages await discovery. Transhemispheric differences (thousands of km) in their communities may be evenly matched by local differences (scales of km, m, and less).
- Keywords
- Central Europe, Ericoid mycorrhizal fungi, Fungal root endophytes, Helotiales, Hyaloscypha sp., Oidiodendron maius, Root-associated fungi, Sebacinales, South America,
- MeSH
- Ascomycota MeSH
- Basidiomycota * MeSH
- Endophytes genetics MeSH
- Ericaceae * microbiology MeSH
- Plant Roots microbiology MeSH
- Mycorrhizae * genetics MeSH
- Symbiosis MeSH
- Publication type
- Journal Article MeSH