Plant endophytes: unveiling hidden applications toward agro-environment sustainability

. 2024 Feb ; 69 (1) : 181-206. [epub] 20230925

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37747637
Odkazy

PubMed 37747637
DOI 10.1007/s12223-023-01092-6
PII: 10.1007/s12223-023-01092-6
Knihovny.cz E-zdroje

Endophytic microbes are plant-associated microorganisms that reside in the interior tissue of plants without causing damage to the host plant. Endophytic microbes can boost the availability of nutrient for plant by using a variety of mechanisms such as fixing nitrogen, solubilizing phosphorus, potassium, and zinc, and producing siderophores, ammonia, hydrogen cyanide, and phytohormones that help plant for growth and protection against various abiotic and biotic stresses. The microbial endophytes have attained the mechanism of producing various hydrolytic enzymes such as cellulase, pectinase, xylanase, amylase, gelatinase, and bioactive compounds for plant growth promotion and protection. The efficient plant growth promoting endophytic microbes could be used as an alternative of chemical fertilizers for agro-environmental sustainability. Endophytic microbes belong to different phyla including Euryarchaeota, Ascomycota, Basidiomycota, Mucoromycota, Firmicutes, Proteobacteria, and Actinobacteria. The most pre-dominant group of bacteria belongs to Proteobacteria including α-, β-, γ-, and δ-Proteobacteria. The least diversity of the endophytic microbes have been revealed from Bacteroidetes, Deinococcus-Thermus, and Acidobacteria. Among reported genera, Achromobacter, Burkholderia, Bacillus, Enterobacter, Herbaspirillum, Pseudomonas, Pantoea, Rhizobium, and Streptomyces were dominant in most host plants. The present review deals with plant endophytic diversity, mechanisms of plant growth promotion, protection, and their role for agro-environmental sustainability. In the future, application of endophytic microbes have potential role in enhancement of crop productivity and maintaining the soil health in sustainable manner.

Zobrazit více v PubMed

Ahmad T, Farooq S, Mirza DN, Kumar A, Mir RA, Riyaz-Ul-Hassan S (2021) Insights into the endophytic bacterial microbiome of Crocus sativus: functional characterization leads to potential agents that enhance the plant growth, productivity, and key metabolite content. Microb Ecol 1:20. https://doi.org/10.1007/s00248-021-01810-y DOI

Ahmed A, Munir S, He P, Li Y, He P, Yixin W et al (2020) Biocontrol arsenals of bacterial endophyte: An imminent triumph against clubroot disease. Microbiol Res 241:126565. https://doi.org/10.1016/j.micres.2020.126565

Ait Barka E, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252. https://doi.org/10.1128/AEM.01047-06 PubMed DOI PMC

Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971

Andrade LF, de Souza GLOD, Nietsche S, Xavier AA, Costa MR, Cardoso AMS et al (2014) Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. J Microbiol 52:27–34. https://doi.org/10.1007/s12275-014-3019-2 PubMed DOI

Anjum N, Chandra R (2015) Endophytic bacteria: optimization of isolation procedure from various medicinal plants and their preliminary characterization. Asian J Pharm Clin Res 8:233–238

Aravind R, Kumar A, Eapen S, Ramana K (2009) Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett Appl Microbiol 48:58–64. https://doi.org/10.1111/j.1472-765X.2008.02486.x PubMed DOI

Arora S, Patel PN, Vanza MJ, Rao G (2014) Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. Afr J Microbiol Res 8:1779–1788. https://doi.org/10.5897/AJMR2013.5557 DOI

Asim S, Hussain A, Murad W, Hamayun M, Iqbal A, Rehman H et al (2022) Endophytic Fusarium oxysporum GW controlling weed and an effective biostimulant for wheat growth. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.922343

Aswathy AJ, Jasim B, Jyothis M, Radhakrishnan E (2013) Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa. 3 Biotech 3:219–224. https://doi.org/10.1007/s13205-012-0086-0

Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, Linder T, Wawrosch C, Uhrin P et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001 PubMed DOI PMC

Aung TN, Nourmohammadi S, Sunitha E, Myint M (2011) Isolation of endophytic bacteria from green gram and study on their plant growth promoting activities. Int J Appl Biol Pharm Tech 2:525–536

Baldan E, Nigris S, Populin F, Zottini M, Squartini A, Baldan B (2014) Identification of culturable bacterial endophyte community isolated from tissues of Vitis vinifera “Glera.” Plant Biosyst 148:508–516. https://doi.org/10.1080/11263504.2014.916364 DOI

Bangera MG, Thomashow LS (1996) Characterization of a genomic locus required for synthesis of the antibiotic 2, 4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2–87. Mol Plant Microbe Interact 9:83–90. https://doi.org/10.1094/mpmi-9-0083

Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413. https://doi.org/10.1007/s00374-008-0344-9 DOI

Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229. https://doi.org/10.1016/j.femsec.2004.08.006 PubMed DOI

Bhattacharjee RB, Singh A, Mukhopadhyay S (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209. https://doi.org/10.1007/s00253-008-1567-2 PubMed DOI

Bhattacharya A (2019) Chapter 1 - global climate change and its impact on agriculture. In: Bhattacharya A (ed) Changing climate and resource use efficiency in plants. Academic Press, pp 1–50.  https://doi.org/10.1016/B978-0-12-816209-5.00001-5

Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. https://doi.org/10.1007/s11274-011-0979-9 PubMed DOI

Bhore SJ, Ravichantar N, Loh CY (2010) Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bioinformation 5:191–197. https://doi.org/10.6026/97320630005191

Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I et al (2018) Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76:117–127. https://doi.org/10.1007/s13199-018-0545-4 DOI

Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to Environmental Stresses Plant Cell 7:1099–1111. https://doi.org/10.1105/tpc.7.7.1099 PubMed DOI

Bonanomi G, Lorito M, Vinale F, Woo SL (2018) Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu Rev Phytopathol 56:1–20. https://doi.org/10.1146/annurev-phyto-080615-100046 PubMed DOI

Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503. https://doi.org/10.1007/s00253-004-1696-1 PubMed DOI

Bottini R, Luna V (1993) Dormancy in floral buds of deciduous fruit trees. Current Topics in Plant Physiology 1:147–159

Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54. https://doi.org/10.1016/S1360-1385(97)82562-9 DOI

Camatti-Sartori V, da Silva-Ribeiro RT, Valdebenito-Sanhueza RM, Pagnocca FC, Echeverrigaray S, Azevedo JL (2005) Endophytic yeasts and filamentous fungi associated with southern Brazilian apple (Malus domestica) orchards subjected to conventional, integrated or organic cultivation. J Basic Microbiol 45:397–402. https://doi.org/10.1002/jobm.200410547 PubMed DOI

Ceballos I, Mosquera S, Angulo M, Mira JJ, Argel LE, Uribe-Velez D et al (2012) Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis. Microb Ecol 64:641–653. https://doi.org/10.1007/s00248-012-0052-8 PubMed DOI

Chakraborty T, Akhtar N (2021) Chapter 20: Biofertilizers: prospects and challenges for future. In: Inamuddin MIA, Rajender B, Mashallah R (eds) Biofertilizers: study and impact. Wiley, Hoboken, NJ.  https://doi.org/10.1002/9781119724995.ch20

Chaudhary HJ, Peng G, Hu M, He Y, Yang L, Luo Y et al (2012) Genetic diversity of endophytic diazotrophs of the wild rice, Oryza alta and identification of the new diazotroph. Acinetobacter Oryzae Sp Nov Microb Ecol 63:813–821. https://doi.org/10.1007/s00248-011-9978-5 PubMed DOI

Cheng Z, Woody OZ, McConkey BJ, Glick BR (2012) Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Appl Soil Ecol 61:255–263. https://doi.org/10.1016/j.apsoil.2011.10.006 DOI

Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Soussi A et al (2015) Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ Microbiol Rep 7:668–678. https://doi.org/10.1111/1758-2229.12304 PubMed DOI

Chimwamurombe PM, Grönemeyer JL, Reinhold-Hurek B (2016) Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol Ecol 92:1–11. https://doi.org/10.1093/femsec/fiw083 DOI

Choudhary DK, Sharma AK, Agarwal P, Varma A, Tuteja N (2017) Volatiles and food security. Springer, Singapore. https://doi.org/10.1007/978-981-10-5553-9 DOI

Christina A, Christapher V, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacognosy Rev 7:11–16. https://doi.org/10.4103/0973-7847.112833 DOI

Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744. https://doi.org/10.1127/science.285.5434.1742 PubMed DOI

Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462. https://doi.org/10.1139/B09-023 DOI

Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197. https://doi.org/10.1007/s00248-011-9883-y PubMed DOI

Costa LEdO, Queiroz MVd, Borges AC, Moraes CAd, Araújo EFd (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43:1562–1575. https://doi.org/10.1590/S1517-83822012000400041 DOI

da Silveira APD, Iório RdPF, Marcos FCC, Fernandes AO, de Souza SACD, Kuramae EE et al (2019) Exploitation of new endophytic bacteria and their ability to promote sugarcane growth and nitrogen nutrition. Antonie Van Leeuwenhoek 112:283–295. https://doi.org/10.1007/s10482-018-1157-y PubMed DOI

Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58. https://doi.org/10.1038/nclimate1633 DOI

Dawwam G, Elbeltagy A, Emara H, Abbas I, Hassan M (2013) Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann Agric Sci 58:195–201. https://doi.org/10.1016/j.aoas.2013.07.007 DOI

De Bruijn FJ (2015) Biological nitrogen fixation. In: Principles of plant-microbe interactions. Springer pp 215–224. https://doi.org/10.1002/9781119762621.ch37

de Melo Pereira GV, Magalhães KT, Lorenzetii ER, Souza TP, Schwan RF (2012) A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb Ecol 63:405–417. https://doi.org/10.1007/s00248-011-9919-3 PubMed DOI

Defez R, Andreozzi A, Bianco C (2017) The overproduction of indole-3-acetic acid (IAA) in endophytes upregulates nitrogen fixation in both bacterial cultures and inoculated rice plants. Microb Ecol 74:441–452. https://doi.org/10.1007/s00248-017-0948-4 PubMed DOI

Desai A, Archana G (2011) Role of siderophores in crop improvement. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Nutrient Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21061-7_6

Diagne N, Ndour M, Djighaly PI, Ngom D, Ngom MCN, Ndong G et al. (2020) Effect of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on salt stress tolerance of Casuarina obesa (Miq.). Front Sustain Food Syst 4:601004. https://doi.org/10.3389/fsufs.2020.601004

Dobereiner J, Reis V, Paula M, Olivares F (1993) Endophytic diazotrophs in sugar cane, cereals and tuber plants. In: Palacios, R., Mora, J., Newton, W.E. (eds) New Horizons in Nitrogen Fixation. Current Plant Science and Biotechnology in Agriculture vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2416-6_55

Doble M, Kumar A (2005) Biotreatment of industrial effluents. Elsevier Press, Burlington

Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek 106:85–125. https://doi.org/10.1007/s10482-013-0095-y PubMed DOI

Dutta D, Gachhui R (2006) Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 56:1899–1903. https://doi.org/10.1099/ijs.0.64101-0 PubMed DOI

Egamberdieva D, Wirth SJ, Shurigin VV, Hashem A, Abd_Allah EF (2017) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Front Microbiol 8:1887. https://doi.org/10.3389/fmicb.2017.01887

El-Tarabily K, Nassar A, Hardy GSJ, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26. https://doi.org/10.1111/j.1365-2672.2008.03926.x PubMed DOI

Etminani F, Harighi B (2018) Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild pistachio trees. Plant Pathol J 34:208–217. https://doi.org/10.5423/PPJ.OA.07.2017.0158 PubMed DOI PMC

Faria PSA, de Oliveira Marques V, Selari PJRG, Martins PF, Silva FG, de Fátima Sales J (2021) Multifunctional potential of endophytic bacteria from Anacardium othonianum Rizzini in promoting in vitro and ex vitro plant growth. Microbiol Res 242:126600. https://doi.org/10.1016/j.micres.2020.126600

Farooq M, Hussain M, Wahid A, Siddique K (2012) Drought stress in plants: an overview. In: Aroca, R. (eds) Plant Responses to Drought Stress. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32653-0_1

Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945. https://doi.org/10.1111/j.1365-2672.2006.02843.x PubMed DOI

Firdous J, Mona R, Muhamad N (2019) Endophytic bacteria and their potential application in agriculture: a review. Indian J Agric Res 53:1–7. https://doi.org/10.18805/IJARe.A-366

Fleet CM, Sun T-p (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85. https://doi.org/10.1016/j.pbi.2004.11.015 PubMed DOI

Fouda AH, Hassan SE-D, Eid AM, Ewais EE-D (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104. https://doi.org/10.1016/j.aoas.2015.04.001 DOI

Frank AC, Saldierna Guzmán JP, Shay JE (2017) Transmission of Bacterial Endophytes Microorganisms 5:70. https://doi.org/10.3390/microorganisms5040070 PubMed DOI

Franke-Whittle IH, O’Shea MG, Leonard GJ, Webb R, Sly LI (2005) Investigation into the ability of Gluconacetobacter sacchari to live as an endophyte in sugarcane. Plant Soil 271:285–295. https://doi.org/10.1007/s11104-004-3039-5 DOI

Fu S-F, Wei J-Y, Chen H-W, Liu Y-Y, Lu H-Y, Chou J-Y (2015) Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signal Behav 10:e1048052. https://doi.org/10.1080/15592324.2015.1048052

Gagne-Bourgue F, Aliferis K, Seguin P, Rani M, Samson R, Jabaji S (2013) Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J Appl Microbiol 114:836–853. https://doi.org/10.1111/jam.12088 PubMed DOI

Gao J-l, Sun P, Sun X-h, Tong S, Yan H, Han M-l et al (2018) Caulobacter zeae sp. nov. and Caulobacter radicis sp. nov., novel endophytic bacteria isolated from maize root (Zea mays L.). Syst Appl Microbiol 41:604–610. https://doi.org/10.1016/j.syapm.2018.08.010 PubMed DOI

Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 963401.  https://doi.org/10.6064/2012/963401

Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68. https://doi.org/10.1006/jtbi.1997.0532 PubMed DOI

Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agric Hortic 12:185–193. https://doi.org/10.1080/01448765.1995.9754736 DOI

Goteti PK, Emmanuel LDA, Desai S, Shaik MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int J Microbiol 2013:1–7. https://doi.org/10.1155/2013/869697 DOI

Götz M, Nirenberg H, Krause S, Wolters H, Draeger S, Buchner A et al (2006) Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods. FEMS Microbiol Ecol 58:404–413. https://doi.org/10.1111/j.1574-6941.2006.00169.x PubMed DOI

Govindarajan M, Balandreau J, Kwon S-W, Weon H-Y, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37. https://doi.org/10.1007/s00248-007-9247-9 PubMed DOI

Govindarajan M, Balandreau J, Muthukumarasamy R, Revathi G, Lakshminarasimhan C (2006) Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant Soil 280:239–252. https://doi.org/10.1007/s11104-005-3223-2 DOI

Govindarajan M, Kwon S-W, Weon H-Y (2007) Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World J Microbiol Biotechnol 23:997–1006. https://doi.org/10.1007/s11274-006-9326-y DOI

Guo B, Dai J-R, Ng S, Huang Y, Leong C, Ong W et al (2000) Cytonic acids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod 63:602–604. https://doi.org/10.1021/np990467r PubMed DOI

Guo D-J, Singh RK, Singh P, Li D-P, Sharma A, Xing Y-X et al (2020) Complete genome sequence of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties, isolated from sugarcane root. Front Microbiol 11:2270. https://doi.org/10.3389/fmicb.2020.580081 DOI

Guo JH, Liu XJ, Zhang Y, Shen J, Han W, Zhang W et al (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010. https://doi.org/10.1126/science.1182570

Guo X, Guan X, Liu C, Jia F, Li J, Jin P et al (2016) Plantactinospora soyae sp. nov., an endophytic actinomycete isolated from soybean root [Glycine max (L.) Merr]. Int J Syst Evol Microbiol 66:2578–2584. https://doi.org/10.1099/ijsem.0.001088 PubMed DOI

Gupta G, Panwar J, Akhtar MS, Jha PN (2012) Endophytic nitrogen-fixing bacteria as biofertilizer. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5449-2_8

Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914. https://doi.org/10.1139/m97-131 DOI

Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (cu, Zn, Mn, Fe, Ni, Mo, B, cl). Curr Opin Plant Biol 12:259–266. https://doi.org/10.1016/j.pbi.2009.05.006 PubMed DOI

Hardoim PR, Hardoim CC, Van Overbeek LS, Van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PloS One 7:e30438. https://doi.org/10.1371/journal.pone.0030438

Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846. https://doi.org/10.1016/j.phytochem.2007.09.017 PubMed DOI

Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Biol 51:463–499. https://doi.org/10.1146/annurev.arplant.51.1.463 DOI

Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873. https://doi.org/10.1007/s00253-013-5228-8 PubMed DOI

Hongrittipun P, Youpensuk S, Rerkasem B (2014) Screening of nitrogen fixing endophytic bacteria in Oryza sativa L. J Agric Sci 6:66. https://doi.org/10.5539/jas.v6n6p66 DOI

Hu Y, Schmidhalter U (2004a) Hu Y, Schmidhalter U (2004) Limitation of salt stress to plant growth. In: Hock E (ed) Plant toxicology, vol 4. Marcel Dekker, New York, pp 191–224

Hu Y, Schmidhalter U (2004b) Limitation of salt stress to plant growth. In: Hock B, Elstner EF (eds) Plant Toxicology. Marcel Dekker, New York, pp 191–224

Huang Y, Kuang Z, Wang W, Cao L (2016) Exploring potential bacterial and fungal biocontrol agents transmitted from seeds to sprouts of wheat. Biol Control 98:27–33. https://doi.org/10.1016/j.biocontrol.2016.02.013 DOI

Husna HA, Shah M, Hamayun M, Iqbal A, Murad W et al (2021) Pseudocitrobacter anthropi reduces heavy metal uptake and improves phytohormones and antioxidant system in Glycine max L. World J Microbiol Biotechnolo 37:195. https://doi.org/10.1007/s11274-021-03156-6 DOI

Husna HA, Shah M, Hamayun M, Qadir M, Iqbal A (2022) Heavy metal tolerant endophytic fungi Aspergillus welwitschiae improves growth, ceasing metal uptake and strengthening antioxidant system in Glycine max L. Environ Sci Pollut Res 29:15501–15515. https://doi.org/10.1007/s11356-021-16640-1 DOI

Hussain A, Shah ST, Rahman H, Irshad M, Iqbal A (2015) Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Front Plant Sci 6:46. https://doi.org/10.3389/fpls.2015.00046 PubMed DOI PMC

Ikeda AC, Bassani LL, Adamoski D, Stringari D, Cordeiro VK, Glienke C et al (2013) Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb Ecol 65:154–160. https://doi.org/10.1007/s00248-012-0104-0 PubMed DOI

Ikeda S, Okubo T, Kaneko T, Inaba S, Maekawa T, Eda S et al (2010) Community shifts of soybean stem-associated bacteria responding to different nodulation phenotypes and N levels. The ISME J 4:315–326. https://doi.org/10.1038/ismej.2009.119 PubMed DOI

Imran A, Hafeez FY, Frühling A, Schumann P, Malik K, Stackebrandt E (2010) Ochrobactrum ciceri sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol 60:1548–1553. https://doi.org/10.1099/ijs.0.013987-0 DOI

Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570. https://doi.org/10.1007/s11103-007-9215-2 PubMed DOI

Ivanova E, Fedorov D, Doronina N, Trotsenko YA (2006) Production of vitamin B12 in aerobic methylotrophic bacteria. Microbiology 75:494–496. https://doi.org/10.1134/S0026261706040217 DOI

Jain R, Bhardwaj P, Pandey SS, Kumar S (2021) Arnebia euchroma, a plant species of cold desert in the Himalayas, harbors beneficial cultivable endophytes in roots and leaves. Front Microbiol 12:1–16. https://doi.org/10.3389/fmicb.2021.696667 DOI

Jalgaonwala RE, Mohite BV, Mahajan RT (2011) A review: natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1:21–32

Jasim B, Anish MC, Shimil V, Jyothis M, Radhakrishnan E (2015) Studies on plant growth promoting properties of fruit-associated bacteria from Elettaria cardamomum and molecular analysis of ACC deaminase gene. Appl Biochem Biotechnol 177:175–189. https://doi.org/10.1007/s12010-015-1736-6 PubMed DOI

Jasim B, John Jimtha C, Jyothis M, Radhakrishnan E (2013) Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regul 71:1–11. https://doi.org/10.1007/s10725-013-9802-y DOI

Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan E (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4:197–204. https://doi.org/10.1007/s13205-013-0143-3

Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Microb Ecol 58:179–188. https://doi.org/10.1007/s00248-009-9485-0 PubMed DOI

Ji G, Silver S (1995) Bacterial resistance mechanisms for heavy metals of environmental concern. J Ind Microbiol 14:61–75. https://doi.org/10.1007/BF01569887 PubMed DOI

Ji SH, Gururani MA, Chun S-C (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98. https://doi.org/10.1016/j.micres.2013.06.003 PubMed DOI

Joe MM, Devaraj S, Benson A, Sa T (2016) Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: evaluation of plant growth promotion and antioxidant activity under salt stress. J Appl Res Med Aromat Plants 3:71–77. https://doi.org/10.1016/j.jarmap.2016.02.003 DOI

Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6:e20396. https://doi.org/10.1371/journal.pone.0020396

Kaur T, Devi R, Kour D, Yadav A, Yadav AN, Dikilitas M et al (2021) (2021) Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biologia 76:2687–2709. https://doi.org/10.1007/s11756-021-00806-w DOI

Kaur T, Devi R, Kumar S, Sheikh I, Kour D, Yadav AN (2022) Microbial consortium with nitrogen fixing and mineral solubilizing attributes for growth of barley (Hordeum vulgare L.). Heliyon 8:e09326

Ke X, Feng S, Wang J, Lu W, Zhang W, Chen M et al (2019) Effect of inoculation with nitrogen fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Syst Appl Microbiol 42:248–260. https://doi.org/10.1016/j.syapm.2018.10.010 PubMed DOI

Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J et al (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64. https://doi.org/10.1016/j.ejbt.2016.02.001 DOI

Khan AL, Waqas M, Kang S-M, Al-Harrasi A, Hussain J, Al-Rawahi A et al (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695. https://doi.org/10.1007/s12275-014-4002-7 PubMed DOI

Khan MA, Asaf S, Khan AL, Ullah I, Ali S, Kang S-M et al (2019) Alleviation of salt stress response in soybean plants with the endophytic bacterial isolate Curtobacterium sp. SAK1. Ann Microbiol 69:797–808. https://doi.org/10.1007/s13213-019-01470-x DOI

Kiani T, Khan SA, Noureen N, Yasmin T, Zakria M, Ahmed H et al (2019) Isolation and characterization of culturable endophytic bacterial community of stripe rust–resistant and stripe rust–susceptible Pakistani wheat cultivars. Int Microbiol 22:191–201. https://doi.org/10.1007/s10123-018-00039-z PubMed DOI

King RW, Evans LT (2003) Gibberellins and flowering of grasses and cereals: prizing open the lid of the “florigen” black box. Ann Rev Plant Biol 54:307–328. https://doi.org/10.1146/annurev.arplant.54.031902.135029 DOI

Kluepfel DA (1993) The behavior and tracking of bacteria in the rhizosphere. Ann Rev Phytopathol 31:441–472. https://doi.org/10.1146/annurev.py.31.090193.002301 DOI

Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Ann Rev Plant Biol 55:459–493. https://doi.org/10.1146/annurev.arplant.55.031903.141655 DOI

Kour D, Rana KL, Kumar R, Yadav N, Rastegari AA, Yadav AN et al (2019) Gene manipulation and regulation of catabolic genes for biodegradation of biphenyl compounds. In: Singh HB, Gupta VK, Jogaiah S (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 1–23. https://doi.org/10.1016/B978-0-444-63503-7.00001-2

Krishnamoorthy A, Agarwal T, Kotamreddy JNR, Bhattacharya R, Mitra A, Maiti TK et al (2020) Impact of seed-transmitted endophytic bacteria on intra-and inter-cultivar plant growth promotion modulated by certain sets of metabolites in rice crop. Microbiol Res 241:126582. https://doi.org/10.1016/j.micres.2020.126582

Kumar A, Bisht B, Joshi V, Dhewa T (2011) Review on bioremediation of polluted environment. A management tool. Int J Environmen Sci 1:1079

Kumar A, Droby S, Singh VK, Singh SK, White JF (2020a) Entry, colonization, and distribution of endophytic microorganisms in plants. In: Kumar A, Radhakrishnan EK (eds) Microbial Endophytes. Elsevier, Woodhead Publishing, pp 1–33. https://doi.org/10.1016/B978-0-12-819654-0.00001-6

Kumar S, Kaushik N (2013) Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PloS one 8:e56202. https://doi.org/10.1371/journal.pone.0056202

Kumar V, Jain L, Jain SK, Chaturvedi S, Kaushal P (2020b) Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. S Afr J Bot 134:50–63. https://doi.org/10.1016/j.sajb.2020.02.017 DOI

Kumar V, Kumar A, Pandey KD, Roy BK (2015) Isolation and characterization of bacterial endophytes from the roots of Cassia tora L. Ann Microbiol 65:1391–1399. https://doi.org/10.1007/s13213-014-0977-x DOI

Kumar V, Pathak DV, Dudeja SS, Saini R, Giri R, Narula S et al (2013) Legume nodule endophytes more diverse than endophytes from roots of legumes or non legumes in soils of Haryana, India. J Microbiol Biotech Res 3:83–92

Kuźniar A, Włodarczyk K, Grządziel J, Goraj W, Gałązka A, Wolińska A (2020) Culture-independent analysis of an endophytic core microbiome in two species of wheat Triticum aestivum L. (cv. ‘Hondia’) and the first report of microbiota in Triticum spelta L. (cv. ‘Rokosz’). Syst Appl Microbiol 43:126025. https://doi.org/10.1016/j.syapm.2019.126025

La Torre-Ruiz D, Ruiz-Valdiviezo VM, Rincón-Molina CI, Rodríguez-Mendiola M, Arias-Castro C, Gutiérrez-Miceli FA et al (2016) Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L. Braz J Microbiol 47:587–596. https://doi.org/10.1016/j.bjm.2016.04.010 PubMed DOI

Lacava PT, Silva-Stenico ME, Araújo WL, Simionato AVC, Carrilho E, Tsai SM et al (2008) Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca. Pesqui Agropecu Bras 43:521–528. https://doi.org/10.1590/S0100-204X2008000400011 DOI

Leite HAC, Silva AB, Gomes FP, Gramacho KP, Faria JC, de Souza JT et al (2013) Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth. Appl Microbiol Biotechnol 97:2639–2651. https://doi.org/10.1007/s00253-012-4574-2 PubMed DOI

Li J, Zhao GZ, Chen HH, Wang HB, Qin S, Zhu WY et al (2008a) Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. Lett Appl Microbiol 47:574–580. https://doi.org/10.1111/j.1472-765X.2008.02470.x PubMed DOI

Li JH, Wang ET, Chen WF, Chen WX (2008b) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246. https://doi.org/10.1016/j.soilbio.2007.08.014 DOI

Li L, Mohamad OAA, Ma J, Friel AD, Su Y, Wang Y et al (2018) Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie Van Leeuwenhoek 111:1735–1748. https://doi.org/10.1007/s10482-018-1062-4 PubMed DOI

Li T, Mann R, Kaur J, Spangenberg G, Sawbridge T (2021) Transcriptomics differentiate two novel bioactive strains of Paenibacillus sp. isolated from the perennial ryegrass seed microbiome. Sci Rep 11:1–16. https://doi.org/10.1038/s41598-021-94820-2 DOI

Liaqat F, Eltem R (2016) Identification and characterization of endophytic bacteria isolated from in vitro cultures of peach and pear rootstocks. 3 Biotech 6:1–8. https://doi.org/10.1007/s13205-016-0442-6

Lin B, Song Z, Jia Y, Zhang Y, Wang L, Fan J et al (2019) Biological characteristics and genome-wide sequence analysis of endophytic nitrogen-fixing bacteria Klebsiella variicola GN02. Biotechnol Biotechnol Equip 33:108–117. https://doi.org/10.1080/13102818.2018.1555010 DOI

Liu C, Wang X, Zhao J, Liu Q, Wang L, Guan X et al (2013) Streptomyces harbinensis sp. nov., an endophytic, ikarugamycin-producing actinomycete isolated from soybean root [Glycine max (L.) Merr.]. Int J Syst Evol Microbiol 63:3579–3584. https://doi.org/10.1099/ijs.0.050088-0 PubMed DOI

Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421. https://doi.org/10.1080/01490451.2011.576602 DOI

Liu H, Tang H, Ni X, Zhang Y, Wang Y (2022) Effects of the endophyte Epichloë coenophiala on the root microbial community and growth performance of tall fescue in different saline-alkali soils. Fungal Ecol 57:101159. https://doi.org/10.1016/j.funeco.2022.101159

Liu M, Li YH, Liu Y, Zhu JN, Liu QF, Liu Y et al (2011a) Flavobacterium phragmitis sp. nov., an endophyte of reed (Phragmites australis). Int J Syst Evol Microbiol 61:2717–2721. https://doi.org/10.1099/ijs.0.027417-0 PubMed DOI

Liu Y-H, Guo J-W, Salam N, Li L, Zhang Y-G, Han J et al (2016) Culturable endophytic bacteria associated with medicinal plant Ferula songorica molecular phylogeny, distribution and screening for industrially important traits. 3 Biotech 6:1–9. https://doi.org/10.1007/s13205-016-0522-7

Liu Y, Liu L, Qiu F, Schumann P, Shi Y, Zou Y et al (2010) Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 60:1266–1270. https://doi.org/10.1099/ijs.0.012179-0 PubMed DOI

Liu Y, Wang H, Sun X, Yang H, Wang Y, Song W (2011b) Study on mechanisms of colonization of nitrogen-fixing PGPB, Klebsiella pneumoniae NG14 on the root surface of rice and the formation of biofilm. Curr Microbiol 62:1113–1122. https://doi.org/10.1007/s00284-010-9835-7 PubMed DOI

Liu H, Zhang L, Meng A, Zhang J, Xie M, Qin Y et al. (2017) Isolation and molecular identification of endophytic diazotrophs from seeds and stems of three cereal crops. PLoS One 12:1–11. https://doi.org/10.1371/journal.pone.0187383

Loaces I, Ferrando L, Fernández Scavino A (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microbial Ecol 61:606–618. https://doi.org/10.1007/s00248-010-9780-9 DOI

Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I et al (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manage 156:62–69. https://doi.org/10.1016/j.jenvman.2015.03.024 PubMed DOI

Mahmood A, Kataoka R (2020) Metabolite profiling reveals a complex response of plants to application of plant growth-promoting endophytic bacteria. Microbiol Res 234:126421. https://doi.org/10.1016/j.micres.2020.126421

Malhi GS, Kaur M, Kaushik P (2021) Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 13:1318. https://doi.org/10.3390/su13031318 DOI

Marag PS, Suman A (2018) Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiol Res 214:101–113. https://doi.org/10.1016/j.micres.2018.05.016 PubMed DOI

Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S et al (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PloS One 7:e48479. https://doi.org/10.1371/journal.pone.0048479

Maropola MKA, Ramond J-B, Trindade M (2015) Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench). J Microbiol Methods 112:104–117. https://doi.org/10.1016/j.mimet.2015.03.012 PubMed DOI

Mastretta C, Taghavi S, Van Der Lelie D, Mengoni A, Galardi F, Gonnelli C et al (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediat 11:251–267. https://doi.org/10.1080/15226510802432678 DOI

Mbai F, Magiri E, Matiru V, Nganga J, Nyambati V (2013) Isolation and characterization of bacterial root endophytes with potential to enhance plant growth from Kenyan basmati rice. Am Int J Contemp Res 3:25–40

Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Tawab A et al (2020) Yucasin and cinnamic acid inhibit IAA and flavonoids biosynthesis minimizing interaction between maize and endophyte Aspergillus nomius. Symbiosis 81:149–160. https://doi.org/10.1007/s13199-020-00690-z DOI

Menéndez E, Carro L, Tejedor C, Fernández-Pascual M, Martínez-Molina E, Peix A et al (2016) Paenibacillus hispanicus sp. nov. isolated from Triticum aestivum roots. Int J Syst Evol 66:4628–4632. https://doi.org/10.1099/ijsem.0.001401 DOI

Mercado-Blanco J, Bakker PA (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92:367–389. https://doi.org/10.1007/s10482-007-9167-1 PubMed DOI

Mitchell C, Hawes C, Iannetta P, Birch ANE, Begg G, Karley AJ (2018) An agroecological approach for weed, pest and disease management in Rubus plantations. In: Graham J, Brennan R (eds) Raspberry. Springer, pp 63–81. https://doi.org/10.1007/978-3-319-99031-6_5

Molina G, Pimentel MR, Bertucci TC, Pastore GM (2012) Application of fungal endophytes in biotechnological processes. Chem Eng Trans 27:289–294

Montañez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28 DOI

Mora Y, Díaz R, Vargas-Lagunas C, Peralta H, Guerrero G, Aguilar A et al (2014) Nitrogen-fixing rhizobial strains isolated from common bean seeds: phylogeny, physiology, and genome analysis. Appl Environ Microbiol 80:5644–5654. https://doi.org/10.1128/AEM.01491-14 PubMed DOI PMC

Morrissey JP, Dow JM, Mark GL, O’Gara F (2004) Are microbes at the root of a solution to world food production? Rational exploitation of interactions between microbes and plants can help to transform agriculture. EMBO Rep 5:922–926. https://doi.org/10.1038/sj.embor.7400263 PubMed DOI PMC

Mousa WK, Shearer C, Limay-Rios V, Ettinger CL, Eisen JA, Raizada MN (2016) Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nat Microbiol 1:1–12. https://doi.org/10.1038/nmicrobiol.2016.167 DOI

Muangthong A, Youpensuk S, Rerkasem B (2015) Isolation and characterisation of endophytic nitrogen fixing bacteria in sugarcane. Trop Life Sci Res 26:41–51 PubMed PMC

Mukherjee A, Singh BK, Verma JP (2020) Harnessing chickpea (Cicer arietinum L.) seed endophytes for enhancing plant growth attributes and bio-controlling against Fusarium sp. Microbiol Res 237:126469. https://doi.org/10.1016/j.micres.2020.126469

Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138. https://doi.org/10.3389/fmicb.2015.00138 PubMed DOI PMC

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651. https://doi.org/10.1146/annurev.arplant.59.032607.092911 DOI

Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils 42:97–108. https://doi.org/10.1007/s00374-005-0008-y DOI

Nath R, Sharma G, Barooah M (2015) Plant growth promoting endophytic fungi isolated from tea (Camellia sinensis) shrubs of Assam, India. Appl Ecol Environ Res 13:877–891

Ngoma L, Esau B, Babalola OO (2013) Isolation and characterization of beneficial indigenous endophytic bacteria for plant growth promoting activity in Molelwane Farm Mafikeng, South Africa. Afr J Biotechnol 12:4105–4114

Nigris S, Baldan E, Tondello A, Zanella F, Vitulo N, Favaro G et al (2018) Biocontrol traits of Bacillus licheniformis GL174, a culturable endophyte of Vitis vinifera cv. Glera BMC Microbiol 18:1–16. https://doi.org/10.1186/s12866-018-1306-5 DOI

Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S (2014) Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol 118:683–694. https://doi.org/10.1016/j.funbio.2014.04.010 PubMed DOI

Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:1–16 DOI

Oliveira V, Gomes NC, Almeida A, Silva AM, Simões MM, Smalla K et al (2014) Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria. Mole Ecol 23:1392–1404. https://doi.org/10.1111/mec.12559 DOI

Ouattara A, Coulibaly K, Konate I, Ismaë B, Tidou AS, Filali-Maltouf A (2019) Selection of Cocoa tree (Theobroma cacao Linn) endophytic bacteria solubilizing tri-calcium phosphate, isolated from seedlings grown on soils of six producing regions of Côte d’Ivoire. Adv Microbiol 9:842–852 DOI

Ozanne P (1980) Phosphate nutrition of plants‐a general treatise. The role of phosphorus in agriculture: 559–589

Özkara A, Akyıl D, Konuk M (2016) Pesticides, environmental pollution, and health. In: Larramendy ML, Soloneski S (eds) Environmental health risk: hazardous factors to living species. IntechOpen. https://doi.org/10.5772/63094

Pahari A, Nayak SK, Banik A, Lakra PB, Mishra BB (2021) Biological nitrogen fixation mechanism and applications. In: Agriculturally Important Microorganisms. CRC Press, pp 137–151

Pancher M, Ceol M, Corneo PE, Longa CMO, Yousaf S, Pertot I et al (2012) Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. Appl Environ Microbiol 78:4308–4317. https://doi.org/10.1128/AEM.07655-11 PubMed DOI PMC

Pandey P, Kang S, Maheshwari D (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 89:177–180

Pandey PK, Singh S, Singh AK, Samanta R, Yadav RNS, Singh MC (2016) Inside the plant: bacterial endophytes and abiotic stress alleviation. J Appl Nat Sci 8:1899–1904. https://doi.org/10.31018/jans.v8i4.1059

Panigrahi S, Mohanty S, Rath C (2020) Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with Indole Acetic Acid (IAA) production and plant growth promoting capabilities against selected crops. S Afr J Bot 134:17–26. https://doi.org/10.1016/j.sajb.2019.09.017 DOI

Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007-impacts, adaptation and vulnerability: working group II contribution to the fourth assessment report of the IPCC, vol 4. Cambridge University Press

Patel JK, Agrawal R, Sidhdhapara R (2020) Root associated bacterial endophytes from Poaceae plants: identification, characterization and plant growth promotion. J Microbiol Biotechnol Food Sci 10:478–483 DOI

Patel JK, Archana G (2017) Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. Plant Soil 417:99–116. https://doi.org/10.1007/s11104-017-3244-7 DOI

Peng G, Yuan Q, Li H, Zhang W, Tan Z (2008) Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 58:2158–2163. https://doi.org/10.1099/ijs.0.65632-0 PubMed DOI

Peng G, Zhang W, Luo H, Xie H, Lai W, Tan Z (2009) Enterobacter oryzae sp. nov., a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia. Int J Syst Evol Microbiol 59:1650–1655. https://doi.org/10.1099/ijs.0.005967-0 PubMed DOI

Pereira S, Monteiro C, Vega A, Castro PM (2016) Endophytic culturable bacteria colonizing Lavandula dentata L. plants: isolation, characterization and evaluation of their plant growth-promoting activities. Ecol Eng 87:91–97. https://doi.org/10.1016/j.ecoleng.2015.11.033 DOI

Pham VT, Rediers H, Ghequire MG, Nguyen HH, De Mot R, Vanderleyden J et al (2017) The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Arch Microbiol 199:513–517. https://doi.org/10.1007/s00203-016-1332-3 PubMed DOI

Pimentel IC, Glienke-Blanco C, Gabardo J, Stuart RM, Azevedo JL (2006) Identification and colonization of endophytic fungi from soybean (Glycine max (L.) Merril) under different environmental conditions. Braz Arch Biol Technol 49:705–711. https://doi.org/10.1590/S1516-89132006000600003 DOI

Prieto P, Schilirò E, Maldonado-González MM, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol 62:435–445. https://doi.org/10.1007/s00248-011-9827-6 PubMed DOI PMC

Qadir M, Hussain A, Shah M, Lee IJ, Iqbal A, Irshad M et al (2022) Comparative assessment of chromate bioremediation potential of Pantoea conspicua and Aspergillus niger. J Hazard Mater 424:127314. https://doi.org/10.1016/j.jhazmat.2021.127314

Qadri M, Rajput R, Abdin MZ, Vishwakarma RA, Riyaz-Ul-Hassan S (2014) Diversity, molecular phylogeny, and bioactive potential of fungal endophytes associated with the Himalayan Blue Pine (Pinus wallichiana). Microb Ecol 67:877–887. https://doi.org/10.1007/s00248-014-0379-4 PubMed DOI

Qiu Z, Egidi E, Liu H, Kaur S, Singh BK (2019) New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol Adv 37:107371. https://doi.org/10.1016/j.biotechadv.2019.03.010

Quadt-Hallmann A, Kloepper J, Benhamou N (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43:577–582. https://doi.org/10.1139/m97-081 DOI

Rafi MM, Krishnaveni MS, Charyulu PBBN (2019) Phosphate-solubilizing microorganisms and their emerging role in sustainable agriculture. In: BuddollaV (eds) Recent developments in applied microbiology and biochemistry. Academic Press, pp 223–233. https://doi.org/10.1016/B978-0-12-816328-3.00017-9

Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D et al (2020) Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 49–60. https://doi.org/10.1016/B978-0-12-820526-6.00004-X

Raiten DJ, Aimone AM (2017) The intersection of climate/environment, food, nutrition and health: crisis and opportunity. Cur Opin Biotec 44:52–62. https://doi.org/10.1016/j.copbio.2016.10.006 DOI

Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160. https://doi.org/10.1016/j.chemosphere.2009.06.047 PubMed DOI

Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149. https://doi.org/10.1016/j.tibtech.2009.12.002 PubMed DOI

Rana KL, Kour D, Kaur T, Devi R, Yadav A, Yadav AN (2021) Bioprospecting of endophytic bacteria from the Indian Himalayas and their role in plant growth promotion of maize (Zea mays L.). J Appl Biol Biotechnol 9:41–50. https://doi.org/10.7324/JABB.2021.9306 DOI

Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N et al (2020a) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107. https://doi.org/10.1007/s10482-020-01429-y PubMed DOI

Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020b) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India Sect B Biol Sci 90:1–11. https://doi.org/10.1007/s40011-020-01168-0 DOI

Rana KL, Kour D, Yadav AN (2019a) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:1–30

Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) advances in endophytic fungal research: Present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

Rangjaroen C, Rerkasem B, Teaumroong N, Noisangiam R, Lumyong S (2015) Promoting plant growth in a commercial rice cultivar by endophytic diazotrophic bacteria isolated from rice landraces. Ann Microbiol 65:253–266. https://doi.org/10.1007/s13213-014-0857-4 DOI

Rania ABA, Jabnoun-Khiareddine H, Nefzi A, Mokni-Tlili S, Daami-Remadi M (2016) Endophytic bacteria from Datura metel for plant growth promotion and bioprotection against Fusarium wilt in tomato. Biocontrol Sci Technol 26:1139–1165. https://doi.org/10.1080/09583157.2016.1188264 DOI

Rawat J, Sanwal P, Saxena J (2018) Towards the mechanisms of nutrient solubilization and fixation in soil system. In: Meena V (eds) Role of Rhizospheric Microbes in Soil. Springer, Singapore, pp 229–257. https://doi.org/10.1007/978-981-13-0044-8_8

Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581–1581. https://doi.org/10.1126/science.107805 PubMed DOI

Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443. https://doi.org/10.1016/j.pbi.2011.04.004 PubMed DOI

Renuka S, Ramanujam B (2016) Fungal endophytes from maize (Zea mays L.): isolation, identification and screening against maize stem borer, Chilo partellus (Swinhoe). J Pure Appl Microbiol 10:523–529

Roane T, Pepper I (1999) Microbial responses to environmentally toxic cadmium. Microb Ecol 38:358–364. https://doi.org/10.1007/s002489901001 PubMed DOI

Roesch LFW, de Quadros PD, Camargo FA, Triplett EW (2007) Screening of diazotrophic bacteria Azopirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Braz. World J Microbiol Biotechnol 23:1377–1383. https://doi.org/10.1007/s11274-007-9376-9 DOI

Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x PubMed DOI

Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol 55:74–81. https://doi.org/10.1002/jobm.201300173 PubMed DOI

Sandhiya G, Sugitha T, Balachandar D, Kumar K (2005) Endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice. Indian J Exp Biol 43:802–807 PubMed

Sandhya V, Shrivastava M, Ali SZ, Prasad VSSK (2017) Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russ Agric Sci 43:22–34. https://doi.org/10.3103/S1068367417010165

Santoyo G, Moreno-Hagelsieb G, del Carmen O-M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. https://doi.org/10.1016/j.micres.2015.11.008 PubMed DOI

Sara B, Faycal B, Claudio B, Olivier D, Ciro G, Markus E et al (2012) The state of soil in Europe: a contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report—SOER 2010

Schneijderberg M, Schmitz L, Cheng X, Polman S, Franken C, Geurts R et al (2018) A genetically and functionally diverse group of non-diazotrophic Bradyrhizobium spp. colonizes the root endophytic compartment of Arabidopsis thaliana. BMC Plant Biol 18:1–9. https://doi.org/10.1186/s12870-018-1272-y DOI

Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381. https://doi.org/10.1007/s00253-009-2116-3 PubMed DOI

Shabanamol S, Divya K, George TK, Rishad K, Sreekumar T, Jisha M (2018) Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa). Physiol Mol Plant Pathol 102:46–54. https://doi.org/10.1016/j.pmpp.2017.11.003 DOI

Shahwar D, Mushtaq Z, Mushtaq H, Alqarawi AA, Park Y, Alshahrani TS et al (2023) Role of microbial inoculants as bio fertilizers for improving crop productivity: a review. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e16134 PubMed DOI PMC

Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang S-M et al (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243. https://doi.org/10.1016/j.plaphy.2016.05.006 PubMed DOI

Sharma P, Vasudeva M (2005) Azide resistant mutants of Acetobacter diazotrophicus and Azospirillum brasilense increase yield and nitrogen content of cotton. J Plant Interact 1:145–149. https://doi.org/10.1080/17429140600997275 DOI

Sharma S, Kumar V, Tripathi RB (2011) Isolation of phosphate solubilizing microorganism (PSMs) from soil. J Microbiol Biotechnol Res 1:90–95

Sheng HM, Gao HS, Xue LG, Ding S, Song CL, Feng HY et al (2011) Analysis of the composition and characteristics of culturable endophytic bacteria within subnival plants of the Tianshan Mountains, northwestern China. Curr Microbiol 62:923–932. https://doi.org/10.1007/s00284-010-9800-5 PubMed DOI

Sheng X-F, Xia J-J, Jiang C-Y, He L-Y, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170. https://doi.org/10.1016/j.envpol.2008.04.007 PubMed DOI

Shore S, Sathisha G (2010) Screening of endophytic colonizing bacteria for cytokinin-like compounds: crude cell-free broth of endophytic colonizing bacteria is unsuitable in cucumber cotyledon bioassay. World J Agric Sci 6:345–352

Singh D, Rajawat MVS, Kaushik R, Prasanna R, Saxena AK (2017) Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant Soil 416:107–116. https://doi.org/10.1007/s11104-017-3189-x DOI

Singh D, Singh N, Chauhan S, Singh P (2011) Developing aluminium-tolerant crop plants using biotechnological tools. Curr Sci 100:1807–1814

Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore DOI

Singh MK, Kushwaha C, Singh RK (2009) Studies on endophytic colonization ability of two upland rice endophytes, Rhizobium sp. and Burkholderia sp., using green fluorescent protein reporter. Curr Microbiol 59:240–243. https://doi.org/10.1007/s00284-009-9419-6 PubMed DOI

Singh RP (2013) Isolation and characterization of multifarious plant growth promoting bacteria Enterobacter ludwigii PGP 19 isolated form pearl millet. Int J Sci Res 4:261–265. https://doi.org/10.1007/s10725-013-9870-z DOI

Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Proc Natl Acad Sci 96:4786–4790. https://doi.org/10.1073/pnas.96.9.4786 PubMed DOI PMC

Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502. https://doi.org/10.1128/mmbr.67.4.491-502.2003 PubMed DOI PMC

Subramanian P, Kim K, Krishnamoorthy R, Sundaram S, Sa T (2015a) Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regul 76:327–332. https://doi.org/10.1007/s10725-014-9993-x DOI

Subramanian P, Mageswari A, Kim K, Lee Y, Sa T (2015b) Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity. Mol Plant Microbe Interact 28:1073–1081. https://doi.org/10.1094/MPMI-01-15-0021-R PubMed DOI

Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) microbial inoculants in sustainable agricultural productivity: Vol. 1: Research Perspectives. Springer India, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

Summerbell RC (2005) Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: influence of site factors on fungal distributions. Stud Mycol 53:121–145. https://doi.org/10.3114/sim.53.1.121 DOI

Sun R, Zhang X-X, Guo X, Wang D, Chu H (2015) Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem 88:9–18. https://doi.org/10.1016/j.soilbio.2015.05.007 DOI

Suyamud B, Thiravetyan P, Gadd GM, Panyapinyopol B, Inthorn D (2020) Bisphenol a removal from a plastic industry wastewater by Dracaena sanderiana endophytic bacteria and Bacillus cereus NI. Int J Phytoremediat 22:167–175. https://doi.org/10.1080/15226514.2019.1652563 DOI

Sziderics A, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202. https://doi.org/10.1139/W07-082 PubMed DOI

Szilagyi-Zecchin VJ, Adamoski D, Gomes RR, Hungria M, Ikeda AC, Kava-Cordeiro V et al (2016) Composition of endophytic fungal community associated with leaves of maize cultivated in south Brazilian field. Acta Microbiol Immunol Hung 63:449–466. https://doi.org/10.1556/030.63.2016.020 PubMed DOI

Tang SY, Hara S, Melling L, Goh KJ, Hashidoko Y (2010) Burkholderia vietnamiensis isolated from root tissues of nipa palm (Nypa fruticans) in Sarawak, Malaysia, proved to be its major endophytic nitrogen-fixing bacterium. Biosci Biotechnol Biochem 74:1972–1975. https://doi.org/10.1271/bbb.100397

Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol 30:719–725. https://doi.org/10.1007/s11274-013-1488-9 PubMed DOI

Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity – present and future aspects. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, pp 315–325, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_22

Tezara W, Mitchell V, Driscoll S, Lawlor D (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917. https://doi.org/10.1038/44842 DOI

Theocharis A, Clément C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–1105. https://doi.org/10.1007/s00425-012-1641-y PubMed DOI

Thomas P, Kumari S, Swarna GK, Gowda T (2007) Papaya shoot tip associated endophytic bacteria isolated from in vitro cultures and host endophyte interaction in vitro and in vivo. Can J Microbiol 53:380–390. https://doi.org/10.1139/W06-141 PubMed DOI

Tian X, Cao L, Tan H, Han W, Chen M, Liu Y et al (2007) Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microb Ecol 53:700–707. https://doi.org/10.1007/s00248-006-9163-4 PubMed DOI

Ting AS, Meon S, Kadir J, Radu S, Singh G (2008) Endophytic microorganisms as potential growth promoters of banana. Biocontrol 53:541–553. https://doi.org/10.1007/s10526-007-9093-1 DOI

Tripathi AK, Verma SC, Chowdhury SP, Lebuhn M, Gattinger A, Schloter M (2006) Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 56:1677–1680. https://doi.org/10.1099/ijs.0.63934-0 PubMed DOI

Tugarova A, Tarantilis PA, Gardiner P (2005) Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of. J Trace Elem Med Biol 19:91–95. https://doi.org/10.1016/j.jtemb.2005.03.002 PubMed DOI

Ullah A, Nisar M, Ali H, Hazrat A, Hayat K, Keerio AA et al (2019) Drought tolerance improvement in plants: an endophytic bacterial approach. Appl Microbiol Biotechnol 103:7385–7397. https://doi.org/10.1007/s00253-019-10045-4 PubMed DOI

UmaMaheswari T, Anbukkarasi K, Hemalatha T, Chendrayan K (2013) Studies on phytohormone producing ability of indigenous endophytic bacteria isolated from tropical legume crops. Int J Curr Microbiol Appl Sci 2:127–136

Valmorbida J, Boaro CSF (2007) Growth and development of Mentha piperita L. in nutrient solution as affected by rates of potassium. Braz Arch Biol Technol 50:379–384. https://doi.org/10.1590/S1516-89132007000300003 DOI

Van Bavel J (2013) The world population explosion: causes, backgrounds and projections for the future. Facts, Views & Vision in ObGyn 5:281

Vega FE, Pava-Ripoll M, Posada F, Buyer JS (2005) Endophytic bacteria in Coffea arabica L. J Basic Microbiol 45:371–380. https://doi.org/10.1002/jobm.200410551 PubMed DOI

Vendan RT, Yu YJ, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48:559–565. https://doi.org/10.1007/s12275-010-0082-1 PubMed DOI

Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A (2017a) Potassium solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microorganisms for green revolution: Volume 1: Microbes for Sustainable Crop Production. Springer Singapore, Singapore, pp 125–149. https://doi.org/10.1007/978-981-10-6241-4_7

Verma S, Kumar M, Kumar A, Das S, Chakdar H, Varma A et al (2022) Diversity of bacterial endophytes of maize (Zea mays) and their functional potential for micronutrient biofortification. Curr Microbiol 79:1–14. https://doi.org/10.1007/s00284-021-02702-7 DOI

Verma SK, Kingsley K, Bergen M, English C, Elmore M, Kharwar RN et al (2018) Bacterial endophytes from rice cut grass (Leersia oryzoides L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. Plant Soil 422:223–238. https://doi.org/10.1007/s11104-017-3339-1 DOI

Verma SK, Kingsley K, Irizarry I, Bergen M, Kharwar R, White J Jr (2017b) Seed-vectored endophytic bacteria modulate development of rice seedlings. J Appl Microbiol 122:1680–1691. https://doi.org/10.1111/jam.13463 PubMed DOI

Von Uexküll H, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15. https://doi.org/10.1007/BF00009558 DOI

Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa T (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol 17:1–13. https://doi.org/10.1186/s12866-017-1117-0 DOI

Wang C, Wang C, Gao Y-L, Wang Y-P, Guo J-H (2016) A consortium of three plant growth-promoting rhizobacterium strains acclimates Lycopersicon esculentum and confers a better tolerance to chilling stress. J Plant Growth Regul 35:54–64. https://doi.org/10.1007/s00344-015-9506-9 DOI

Wang Y, Yang X, Zhang X, Dong L, Zhang J, Wei Y et al (2014) Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H. J Agric Food Chem 62:1783–1791. https://doi.org/10.1021/jf404152u PubMed DOI

Wang Z, Solanki MK, Pang F, Singh RK, Yang L-T, Li Y-R et al (2017) Identification and efficiency of a nitrogen-fixing endophytic actinobacterial strain from sugarcane. Sugar Tech 19:492–500. https://doi.org/10.1007/s12355-016-0498-y DOI

Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99:2955–2965. https://doi.org/10.1007/s00253-015-6487-3 PubMed DOI

WeiXie L, Yang R, Liu B, Lei N, Peng S, Li J et al (2022) Effects of Pb-, Cd-resistant bacterium Pantoea sp. on growth, heavy metal uptake and bacterial communities in oligotrophic growth substrates of Lolium multiflorum Lam. Environ Sci Pollut Res 29:50742–50754. https://doi.org/10.1007/s11356-022-19180-4 DOI

West E, Cother E, Steel C, Ash G (2010) The characterization and diversity of bacterial endophytes of grapevine. Can J Microbiol 56:209–216. https://doi.org/10.1139/W10-004 PubMed DOI

White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84. https://doi.org/10.1111/j.1469-8137.2008.02738.x PubMed DOI

Wybouw B, De Rybel B (2019) Cytokinin–a developing story. Trends Plant Sci 24:177–185. https://doi.org/10.1016/j.tplants.2018.10.012 PubMed DOI

Xiao X, Chen W, Zong L, Yang J, Jiao S, Lin Y et al (2017) Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Mole Ecol 26:1641–1651. https://doi.org/10.1111/mec.14027 DOI

Xie H, Feng X, Wang M, Wang Y, Kumar Awasthi M, Xu P (2020) Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights. Bioengineered 11:1001–1015. https://doi.org/10.1080/21655979.2020.1816788 PubMed DOI PMC

Xing Y-X, Wei C-Y, Mo Y, Yang L-T, Huang S-L, Li Y-R (2016) Nitrogen-fixing and plant growth-promoting ability of two endophytic bacterial strains isolated from sugarcane stalks. Sugar Tech 18:373–379. https://doi.org/10.1007/s12355-015-0397-7 DOI

Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, San Diego, pp 305–332. https://doi.org/10.1016/B978-0-444-63987-5.00015-3

Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier Science, San Diego, pp 13–41. https://doi.org/10.1016/B978-0-444-63994-3.00002-3

Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017) Extreme cold environments: a suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4. https://doi.org/10.19080/AIBM.2017.02.555584

Yaish MW, Antony I, Glick BR (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek 107:1519–1532. https://doi.org/10.1007/s10482-015-0445-z PubMed DOI

Yamazaki Y, Someno T, Igarashi M, Kinoshita N, Hatano M, Kawada M et al (2015) Androprostamines A and B, the new anti-prostate cancer agents produced by Streptomyces sp. MK932-CF8. J Antibiot 68:279–285. https://doi.org/10.1038/ja.2014.135 DOI

Yan X, Wang Z, Mei Y, Wang L, Wang X, Xu Q, Peng S, Zhou Y, Wei C (2018) Isolation, diversity, and growth-promoting activities of endophytic bacteria from tea cultivars of Zijuan and Yunkang-10. Front Microbiol 9:1848. https://doi.org/10.3389/fmicb.2018.01848 PubMed DOI PMC

Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK et al (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420. https://doi.org/10.1007/s10725-012-9730-2 DOI

Yang F, Zhang R, Wu X, Xu T, Ahmad S, Zhang X et al (2020) An endophytic strain of the genus Bacillus isolated from the seeds of maize (Zea mays L.) has antagonistic activity against maize pathogenic strains. Microbl pathogen 142:104074. https://doi.org/10.1016/j.micpath.2020.104074

Yeo A (1998) Predicting the interaction between the effects of salinity and climate change on crop plants. Sci Hortic 78:159–174. https://doi.org/10.1016/S0304-4238(98)00193-9 DOI

Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Greer CW (2014) Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J 8:344–358. https://doi.org/10.1038/ismej.2013.163 PubMed DOI

Yuan Z-S, Liu F, Zhang G-F (2015) Characteristics and biodiversity of endophytic phosphorus and potassium solubilizing bacteria in moso bamboo (Phyllostachys edulis). Acta Biol Hung 66:449–459. https://doi.org/10.1556/018.66.2015.4.9 PubMed DOI

Zakria M, Njoloma J, Saeki Y, Akao S (2007) Colonization and nitrogen-fixing ability of Herbaspirillum sp. strain B501 gfp1 and assessment of its growth-promoting ability in cultivated rice. Microbes Environ 22:197–206. https://doi.org/10.1264/jsme2.22.197 DOI

Zakria M, Udonishi K, Ogawa T, Yamamoto A, Saeki Y, Akao S (2008) Influence of inoculation technique on the endophytic colonization of rice by Pantoea sp. isolated from sweet potato and by Enterobacter sp. isolated from sugarcane. Soil Sci Plant Nutri 54:224–236. https://doi.org/10.1111/j.1747-0765.2007.00233.x DOI

Zhang B, Salituro G, Szalkowski D, Li Z, Zhang Y, Royo I et al (1999) Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284:974–977. https://doi.org/10.1126/science.284.5416.974 PubMed DOI

Zhang F, Zhang H, Wang G, Xu L, Shen Z (2009) Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J Hazard Mater 168:76–84. https://doi.org/10.1016/j.jhazmat.2009.02.002 PubMed DOI

Zhang L, Gao J-S, Kim S-G, Zhang C-W, Jiang J-Q, Ma X-T et al (2016) Novosphingobium oryzae sp. nov., a potential plant-promoting endophytic bacterium isolated from rice roots. Int J Syst Evol Microbiol 66:302–307. https://doi.org/10.1099/ijsem.0.000718 PubMed DOI

Zhang Y-f, He L-y, Chen Z-j, Zhang W-h, Wang Q-y, Qian M et al (2011) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186:1720–1725. https://doi.org/10.1016/j.jhazmat.2010.12.069 PubMed DOI

Zhao L, Xu Y, Lai X-H, Shan C, Deng Z, Ji Y (2015) Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz J Microbiol 46:977–989. https://doi.org/10.1590/S1517-838246420140024 PubMed DOI PMC

Zhao Q-G (2002) The red soil material cycling and its regulation summary. Science Press, Publisher

Zhu B, Chen M, Lin L, Yang L, Li Y, An Q (2012) Genome sequence of Enterobacter sp. strain SP1, an endophytic nitrogen-fixing bacterium isolated from sugarcane. J Bacteriol 194:6963–6964. https://doi.org/10.1128/jb.01933-12 PubMed DOI PMC

Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate solubilizing halophilic bacterium Kushneria sp. YCWA 18 from Daqiao saltern on the coast of Yellow Sea of China. Evid base Compl Alternative Med 615032. https://doi.org/10.1155/2011/615032

Zou W, Meng J, Lu H, Chen G, Shi G, Zhang T et al (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530. https://doi.org/10.1021/np000204t PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...