Plant endophytes: unveiling hidden applications toward agro-environment sustainability
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37747637
DOI
10.1007/s12223-023-01092-6
PII: 10.1007/s12223-023-01092-6
Knihovny.cz E-zdroje
- Klíčová slova
- Abiotic stress, Agricultural sustainability, Endophytes, Plant growth promotion,
- MeSH
- Ascomycota * MeSH
- Bacillus * MeSH
- Bacteria genetika MeSH
- Basidiomycota * MeSH
- endofyty MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Endophytic microbes are plant-associated microorganisms that reside in the interior tissue of plants without causing damage to the host plant. Endophytic microbes can boost the availability of nutrient for plant by using a variety of mechanisms such as fixing nitrogen, solubilizing phosphorus, potassium, and zinc, and producing siderophores, ammonia, hydrogen cyanide, and phytohormones that help plant for growth and protection against various abiotic and biotic stresses. The microbial endophytes have attained the mechanism of producing various hydrolytic enzymes such as cellulase, pectinase, xylanase, amylase, gelatinase, and bioactive compounds for plant growth promotion and protection. The efficient plant growth promoting endophytic microbes could be used as an alternative of chemical fertilizers for agro-environmental sustainability. Endophytic microbes belong to different phyla including Euryarchaeota, Ascomycota, Basidiomycota, Mucoromycota, Firmicutes, Proteobacteria, and Actinobacteria. The most pre-dominant group of bacteria belongs to Proteobacteria including α-, β-, γ-, and δ-Proteobacteria. The least diversity of the endophytic microbes have been revealed from Bacteroidetes, Deinococcus-Thermus, and Acidobacteria. Among reported genera, Achromobacter, Burkholderia, Bacillus, Enterobacter, Herbaspirillum, Pseudomonas, Pantoea, Rhizobium, and Streptomyces were dominant in most host plants. The present review deals with plant endophytic diversity, mechanisms of plant growth promotion, protection, and their role for agro-environmental sustainability. In the future, application of endophytic microbes have potential role in enhancement of crop productivity and maintaining the soil health in sustainable manner.
Department of Botany Banaras Hindu University Varanasi 221005 Uttar Pradesh India
Faculty of Agricultural Sciences GLA University Mathura 281406 Uttar Pradesh India
Zobrazit více v PubMed
Ahmad T, Farooq S, Mirza DN, Kumar A, Mir RA, Riyaz-Ul-Hassan S (2021) Insights into the endophytic bacterial microbiome of Crocus sativus: functional characterization leads to potential agents that enhance the plant growth, productivity, and key metabolite content. Microb Ecol 1:20. https://doi.org/10.1007/s00248-021-01810-y DOI
Ahmed A, Munir S, He P, Li Y, He P, Yixin W et al (2020) Biocontrol arsenals of bacterial endophyte: An imminent triumph against clubroot disease. Microbiol Res 241:126565. https://doi.org/10.1016/j.micres.2020.126565
Ait Barka E, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252. https://doi.org/10.1128/AEM.01047-06 PubMed DOI PMC
Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971
Andrade LF, de Souza GLOD, Nietsche S, Xavier AA, Costa MR, Cardoso AMS et al (2014) Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. J Microbiol 52:27–34. https://doi.org/10.1007/s12275-014-3019-2 PubMed DOI
Anjum N, Chandra R (2015) Endophytic bacteria: optimization of isolation procedure from various medicinal plants and their preliminary characterization. Asian J Pharm Clin Res 8:233–238
Aravind R, Kumar A, Eapen S, Ramana K (2009) Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett Appl Microbiol 48:58–64. https://doi.org/10.1111/j.1472-765X.2008.02486.x PubMed DOI
Arora S, Patel PN, Vanza MJ, Rao G (2014) Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. Afr J Microbiol Res 8:1779–1788. https://doi.org/10.5897/AJMR2013.5557 DOI
Asim S, Hussain A, Murad W, Hamayun M, Iqbal A, Rehman H et al (2022) Endophytic Fusarium oxysporum GW controlling weed and an effective biostimulant for wheat growth. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.922343
Aswathy AJ, Jasim B, Jyothis M, Radhakrishnan E (2013) Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa. 3 Biotech 3:219–224. https://doi.org/10.1007/s13205-012-0086-0
Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, Linder T, Wawrosch C, Uhrin P et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001 PubMed DOI PMC
Aung TN, Nourmohammadi S, Sunitha E, Myint M (2011) Isolation of endophytic bacteria from green gram and study on their plant growth promoting activities. Int J Appl Biol Pharm Tech 2:525–536
Baldan E, Nigris S, Populin F, Zottini M, Squartini A, Baldan B (2014) Identification of culturable bacterial endophyte community isolated from tissues of Vitis vinifera “Glera.” Plant Biosyst 148:508–516. https://doi.org/10.1080/11263504.2014.916364 DOI
Bangera MG, Thomashow LS (1996) Characterization of a genomic locus required for synthesis of the antibiotic 2, 4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2–87. Mol Plant Microbe Interact 9:83–90. https://doi.org/10.1094/mpmi-9-0083
Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413. https://doi.org/10.1007/s00374-008-0344-9 DOI
Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229. https://doi.org/10.1016/j.femsec.2004.08.006 PubMed DOI
Bhattacharjee RB, Singh A, Mukhopadhyay S (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209. https://doi.org/10.1007/s00253-008-1567-2 PubMed DOI
Bhattacharya A (2019) Chapter 1 - global climate change and its impact on agriculture. In: Bhattacharya A (ed) Changing climate and resource use efficiency in plants. Academic Press, pp 1–50. https://doi.org/10.1016/B978-0-12-816209-5.00001-5
Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. https://doi.org/10.1007/s11274-011-0979-9 PubMed DOI
Bhore SJ, Ravichantar N, Loh CY (2010) Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bioinformation 5:191–197. https://doi.org/10.6026/97320630005191
Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I et al (2018) Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76:117–127. https://doi.org/10.1007/s13199-018-0545-4 DOI
Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to Environmental Stresses Plant Cell 7:1099–1111. https://doi.org/10.1105/tpc.7.7.1099 PubMed DOI
Bonanomi G, Lorito M, Vinale F, Woo SL (2018) Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu Rev Phytopathol 56:1–20. https://doi.org/10.1146/annurev-phyto-080615-100046 PubMed DOI
Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503. https://doi.org/10.1007/s00253-004-1696-1 PubMed DOI
Bottini R, Luna V (1993) Dormancy in floral buds of deciduous fruit trees. Current Topics in Plant Physiology 1:147–159
Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54. https://doi.org/10.1016/S1360-1385(97)82562-9 DOI
Camatti-Sartori V, da Silva-Ribeiro RT, Valdebenito-Sanhueza RM, Pagnocca FC, Echeverrigaray S, Azevedo JL (2005) Endophytic yeasts and filamentous fungi associated with southern Brazilian apple (Malus domestica) orchards subjected to conventional, integrated or organic cultivation. J Basic Microbiol 45:397–402. https://doi.org/10.1002/jobm.200410547 PubMed DOI
Ceballos I, Mosquera S, Angulo M, Mira JJ, Argel LE, Uribe-Velez D et al (2012) Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis. Microb Ecol 64:641–653. https://doi.org/10.1007/s00248-012-0052-8 PubMed DOI
Chakraborty T, Akhtar N (2021) Chapter 20: Biofertilizers: prospects and challenges for future. In: Inamuddin MIA, Rajender B, Mashallah R (eds) Biofertilizers: study and impact. Wiley, Hoboken, NJ. https://doi.org/10.1002/9781119724995.ch20
Chaudhary HJ, Peng G, Hu M, He Y, Yang L, Luo Y et al (2012) Genetic diversity of endophytic diazotrophs of the wild rice, Oryza alta and identification of the new diazotroph. Acinetobacter Oryzae Sp Nov Microb Ecol 63:813–821. https://doi.org/10.1007/s00248-011-9978-5 PubMed DOI
Cheng Z, Woody OZ, McConkey BJ, Glick BR (2012) Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Appl Soil Ecol 61:255–263. https://doi.org/10.1016/j.apsoil.2011.10.006 DOI
Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Soussi A et al (2015) Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ Microbiol Rep 7:668–678. https://doi.org/10.1111/1758-2229.12304 PubMed DOI
Chimwamurombe PM, Grönemeyer JL, Reinhold-Hurek B (2016) Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol Ecol 92:1–11. https://doi.org/10.1093/femsec/fiw083 DOI
Choudhary DK, Sharma AK, Agarwal P, Varma A, Tuteja N (2017) Volatiles and food security. Springer, Singapore. https://doi.org/10.1007/978-981-10-5553-9 DOI
Christina A, Christapher V, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacognosy Rev 7:11–16. https://doi.org/10.4103/0973-7847.112833 DOI
Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744. https://doi.org/10.1127/science.285.5434.1742 PubMed DOI
Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462. https://doi.org/10.1139/B09-023 DOI
Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197. https://doi.org/10.1007/s00248-011-9883-y PubMed DOI
Costa LEdO, Queiroz MVd, Borges AC, Moraes CAd, Araújo EFd (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43:1562–1575. https://doi.org/10.1590/S1517-83822012000400041 DOI
da Silveira APD, Iório RdPF, Marcos FCC, Fernandes AO, de Souza SACD, Kuramae EE et al (2019) Exploitation of new endophytic bacteria and their ability to promote sugarcane growth and nitrogen nutrition. Antonie Van Leeuwenhoek 112:283–295. https://doi.org/10.1007/s10482-018-1157-y PubMed DOI
Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58. https://doi.org/10.1038/nclimate1633 DOI
Dawwam G, Elbeltagy A, Emara H, Abbas I, Hassan M (2013) Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann Agric Sci 58:195–201. https://doi.org/10.1016/j.aoas.2013.07.007 DOI
De Bruijn FJ (2015) Biological nitrogen fixation. In: Principles of plant-microbe interactions. Springer pp 215–224. https://doi.org/10.1002/9781119762621.ch37
de Melo Pereira GV, Magalhães KT, Lorenzetii ER, Souza TP, Schwan RF (2012) A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb Ecol 63:405–417. https://doi.org/10.1007/s00248-011-9919-3 PubMed DOI
Defez R, Andreozzi A, Bianco C (2017) The overproduction of indole-3-acetic acid (IAA) in endophytes upregulates nitrogen fixation in both bacterial cultures and inoculated rice plants. Microb Ecol 74:441–452. https://doi.org/10.1007/s00248-017-0948-4 PubMed DOI
Desai A, Archana G (2011) Role of siderophores in crop improvement. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Nutrient Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21061-7_6
Diagne N, Ndour M, Djighaly PI, Ngom D, Ngom MCN, Ndong G et al. (2020) Effect of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on salt stress tolerance of Casuarina obesa (Miq.). Front Sustain Food Syst 4:601004. https://doi.org/10.3389/fsufs.2020.601004
Dobereiner J, Reis V, Paula M, Olivares F (1993) Endophytic diazotrophs in sugar cane, cereals and tuber plants. In: Palacios, R., Mora, J., Newton, W.E. (eds) New Horizons in Nitrogen Fixation. Current Plant Science and Biotechnology in Agriculture vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2416-6_55
Doble M, Kumar A (2005) Biotreatment of industrial effluents. Elsevier Press, Burlington
Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek 106:85–125. https://doi.org/10.1007/s10482-013-0095-y PubMed DOI
Dutta D, Gachhui R (2006) Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 56:1899–1903. https://doi.org/10.1099/ijs.0.64101-0 PubMed DOI
Egamberdieva D, Wirth SJ, Shurigin VV, Hashem A, Abd_Allah EF (2017) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Front Microbiol 8:1887. https://doi.org/10.3389/fmicb.2017.01887
El-Tarabily K, Nassar A, Hardy GSJ, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26. https://doi.org/10.1111/j.1365-2672.2008.03926.x PubMed DOI
Etminani F, Harighi B (2018) Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild pistachio trees. Plant Pathol J 34:208–217. https://doi.org/10.5423/PPJ.OA.07.2017.0158 PubMed DOI PMC
Faria PSA, de Oliveira Marques V, Selari PJRG, Martins PF, Silva FG, de Fátima Sales J (2021) Multifunctional potential of endophytic bacteria from Anacardium othonianum Rizzini in promoting in vitro and ex vitro plant growth. Microbiol Res 242:126600. https://doi.org/10.1016/j.micres.2020.126600
Farooq M, Hussain M, Wahid A, Siddique K (2012) Drought stress in plants: an overview. In: Aroca, R. (eds) Plant Responses to Drought Stress. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32653-0_1
Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945. https://doi.org/10.1111/j.1365-2672.2006.02843.x PubMed DOI
Firdous J, Mona R, Muhamad N (2019) Endophytic bacteria and their potential application in agriculture: a review. Indian J Agric Res 53:1–7. https://doi.org/10.18805/IJARe.A-366
Fleet CM, Sun T-p (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85. https://doi.org/10.1016/j.pbi.2004.11.015 PubMed DOI
Fouda AH, Hassan SE-D, Eid AM, Ewais EE-D (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104. https://doi.org/10.1016/j.aoas.2015.04.001 DOI
Frank AC, Saldierna Guzmán JP, Shay JE (2017) Transmission of Bacterial Endophytes Microorganisms 5:70. https://doi.org/10.3390/microorganisms5040070 PubMed DOI
Franke-Whittle IH, O’Shea MG, Leonard GJ, Webb R, Sly LI (2005) Investigation into the ability of Gluconacetobacter sacchari to live as an endophyte in sugarcane. Plant Soil 271:285–295. https://doi.org/10.1007/s11104-004-3039-5 DOI
Fu S-F, Wei J-Y, Chen H-W, Liu Y-Y, Lu H-Y, Chou J-Y (2015) Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signal Behav 10:e1048052. https://doi.org/10.1080/15592324.2015.1048052
Gagne-Bourgue F, Aliferis K, Seguin P, Rani M, Samson R, Jabaji S (2013) Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J Appl Microbiol 114:836–853. https://doi.org/10.1111/jam.12088 PubMed DOI
Gao J-l, Sun P, Sun X-h, Tong S, Yan H, Han M-l et al (2018) Caulobacter zeae sp. nov. and Caulobacter radicis sp. nov., novel endophytic bacteria isolated from maize root (Zea mays L.). Syst Appl Microbiol 41:604–610. https://doi.org/10.1016/j.syapm.2018.08.010 PubMed DOI
Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 963401. https://doi.org/10.6064/2012/963401
Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68. https://doi.org/10.1006/jtbi.1997.0532 PubMed DOI
Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agric Hortic 12:185–193. https://doi.org/10.1080/01448765.1995.9754736 DOI
Goteti PK, Emmanuel LDA, Desai S, Shaik MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int J Microbiol 2013:1–7. https://doi.org/10.1155/2013/869697 DOI
Götz M, Nirenberg H, Krause S, Wolters H, Draeger S, Buchner A et al (2006) Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods. FEMS Microbiol Ecol 58:404–413. https://doi.org/10.1111/j.1574-6941.2006.00169.x PubMed DOI
Govindarajan M, Balandreau J, Kwon S-W, Weon H-Y, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37. https://doi.org/10.1007/s00248-007-9247-9 PubMed DOI
Govindarajan M, Balandreau J, Muthukumarasamy R, Revathi G, Lakshminarasimhan C (2006) Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant Soil 280:239–252. https://doi.org/10.1007/s11104-005-3223-2 DOI
Govindarajan M, Kwon S-W, Weon H-Y (2007) Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World J Microbiol Biotechnol 23:997–1006. https://doi.org/10.1007/s11274-006-9326-y DOI
Guo B, Dai J-R, Ng S, Huang Y, Leong C, Ong W et al (2000) Cytonic acids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod 63:602–604. https://doi.org/10.1021/np990467r PubMed DOI
Guo D-J, Singh RK, Singh P, Li D-P, Sharma A, Xing Y-X et al (2020) Complete genome sequence of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties, isolated from sugarcane root. Front Microbiol 11:2270. https://doi.org/10.3389/fmicb.2020.580081 DOI
Guo JH, Liu XJ, Zhang Y, Shen J, Han W, Zhang W et al (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010. https://doi.org/10.1126/science.1182570
Guo X, Guan X, Liu C, Jia F, Li J, Jin P et al (2016) Plantactinospora soyae sp. nov., an endophytic actinomycete isolated from soybean root [Glycine max (L.) Merr]. Int J Syst Evol Microbiol 66:2578–2584. https://doi.org/10.1099/ijsem.0.001088 PubMed DOI
Gupta G, Panwar J, Akhtar MS, Jha PN (2012) Endophytic nitrogen-fixing bacteria as biofertilizer. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5449-2_8
Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914. https://doi.org/10.1139/m97-131 DOI
Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (cu, Zn, Mn, Fe, Ni, Mo, B, cl). Curr Opin Plant Biol 12:259–266. https://doi.org/10.1016/j.pbi.2009.05.006 PubMed DOI
Hardoim PR, Hardoim CC, Van Overbeek LS, Van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PloS One 7:e30438. https://doi.org/10.1371/journal.pone.0030438
Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846. https://doi.org/10.1016/j.phytochem.2007.09.017 PubMed DOI
Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Biol 51:463–499. https://doi.org/10.1146/annurev.arplant.51.1.463 DOI
Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873. https://doi.org/10.1007/s00253-013-5228-8 PubMed DOI
Hongrittipun P, Youpensuk S, Rerkasem B (2014) Screening of nitrogen fixing endophytic bacteria in Oryza sativa L. J Agric Sci 6:66. https://doi.org/10.5539/jas.v6n6p66 DOI
Hu Y, Schmidhalter U (2004a) Hu Y, Schmidhalter U (2004) Limitation of salt stress to plant growth. In: Hock E (ed) Plant toxicology, vol 4. Marcel Dekker, New York, pp 191–224
Hu Y, Schmidhalter U (2004b) Limitation of salt stress to plant growth. In: Hock B, Elstner EF (eds) Plant Toxicology. Marcel Dekker, New York, pp 191–224
Huang Y, Kuang Z, Wang W, Cao L (2016) Exploring potential bacterial and fungal biocontrol agents transmitted from seeds to sprouts of wheat. Biol Control 98:27–33. https://doi.org/10.1016/j.biocontrol.2016.02.013 DOI
Husna HA, Shah M, Hamayun M, Iqbal A, Murad W et al (2021) Pseudocitrobacter anthropi reduces heavy metal uptake and improves phytohormones and antioxidant system in Glycine max L. World J Microbiol Biotechnolo 37:195. https://doi.org/10.1007/s11274-021-03156-6 DOI
Husna HA, Shah M, Hamayun M, Qadir M, Iqbal A (2022) Heavy metal tolerant endophytic fungi Aspergillus welwitschiae improves growth, ceasing metal uptake and strengthening antioxidant system in Glycine max L. Environ Sci Pollut Res 29:15501–15515. https://doi.org/10.1007/s11356-021-16640-1 DOI
Hussain A, Shah ST, Rahman H, Irshad M, Iqbal A (2015) Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Front Plant Sci 6:46. https://doi.org/10.3389/fpls.2015.00046 PubMed DOI PMC
Ikeda AC, Bassani LL, Adamoski D, Stringari D, Cordeiro VK, Glienke C et al (2013) Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb Ecol 65:154–160. https://doi.org/10.1007/s00248-012-0104-0 PubMed DOI
Ikeda S, Okubo T, Kaneko T, Inaba S, Maekawa T, Eda S et al (2010) Community shifts of soybean stem-associated bacteria responding to different nodulation phenotypes and N levels. The ISME J 4:315–326. https://doi.org/10.1038/ismej.2009.119 PubMed DOI
Imran A, Hafeez FY, Frühling A, Schumann P, Malik K, Stackebrandt E (2010) Ochrobactrum ciceri sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol 60:1548–1553. https://doi.org/10.1099/ijs.0.013987-0 DOI
Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570. https://doi.org/10.1007/s11103-007-9215-2 PubMed DOI
Ivanova E, Fedorov D, Doronina N, Trotsenko YA (2006) Production of vitamin B12 in aerobic methylotrophic bacteria. Microbiology 75:494–496. https://doi.org/10.1134/S0026261706040217 DOI
Jain R, Bhardwaj P, Pandey SS, Kumar S (2021) Arnebia euchroma, a plant species of cold desert in the Himalayas, harbors beneficial cultivable endophytes in roots and leaves. Front Microbiol 12:1–16. https://doi.org/10.3389/fmicb.2021.696667 DOI
Jalgaonwala RE, Mohite BV, Mahajan RT (2011) A review: natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1:21–32
Jasim B, Anish MC, Shimil V, Jyothis M, Radhakrishnan E (2015) Studies on plant growth promoting properties of fruit-associated bacteria from Elettaria cardamomum and molecular analysis of ACC deaminase gene. Appl Biochem Biotechnol 177:175–189. https://doi.org/10.1007/s12010-015-1736-6 PubMed DOI
Jasim B, John Jimtha C, Jyothis M, Radhakrishnan E (2013) Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regul 71:1–11. https://doi.org/10.1007/s10725-013-9802-y DOI
Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan E (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4:197–204. https://doi.org/10.1007/s13205-013-0143-3
Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Microb Ecol 58:179–188. https://doi.org/10.1007/s00248-009-9485-0 PubMed DOI
Ji G, Silver S (1995) Bacterial resistance mechanisms for heavy metals of environmental concern. J Ind Microbiol 14:61–75. https://doi.org/10.1007/BF01569887 PubMed DOI
Ji SH, Gururani MA, Chun S-C (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98. https://doi.org/10.1016/j.micres.2013.06.003 PubMed DOI
Joe MM, Devaraj S, Benson A, Sa T (2016) Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: evaluation of plant growth promotion and antioxidant activity under salt stress. J Appl Res Med Aromat Plants 3:71–77. https://doi.org/10.1016/j.jarmap.2016.02.003 DOI
Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6:e20396. https://doi.org/10.1371/journal.pone.0020396
Kaur T, Devi R, Kour D, Yadav A, Yadav AN, Dikilitas M et al (2021) (2021) Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biologia 76:2687–2709. https://doi.org/10.1007/s11756-021-00806-w DOI
Kaur T, Devi R, Kumar S, Sheikh I, Kour D, Yadav AN (2022) Microbial consortium with nitrogen fixing and mineral solubilizing attributes for growth of barley (Hordeum vulgare L.). Heliyon 8:e09326
Ke X, Feng S, Wang J, Lu W, Zhang W, Chen M et al (2019) Effect of inoculation with nitrogen fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Syst Appl Microbiol 42:248–260. https://doi.org/10.1016/j.syapm.2018.10.010 PubMed DOI
Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J et al (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64. https://doi.org/10.1016/j.ejbt.2016.02.001 DOI
Khan AL, Waqas M, Kang S-M, Al-Harrasi A, Hussain J, Al-Rawahi A et al (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695. https://doi.org/10.1007/s12275-014-4002-7 PubMed DOI
Khan MA, Asaf S, Khan AL, Ullah I, Ali S, Kang S-M et al (2019) Alleviation of salt stress response in soybean plants with the endophytic bacterial isolate Curtobacterium sp. SAK1. Ann Microbiol 69:797–808. https://doi.org/10.1007/s13213-019-01470-x DOI
Kiani T, Khan SA, Noureen N, Yasmin T, Zakria M, Ahmed H et al (2019) Isolation and characterization of culturable endophytic bacterial community of stripe rust–resistant and stripe rust–susceptible Pakistani wheat cultivars. Int Microbiol 22:191–201. https://doi.org/10.1007/s10123-018-00039-z PubMed DOI
King RW, Evans LT (2003) Gibberellins and flowering of grasses and cereals: prizing open the lid of the “florigen” black box. Ann Rev Plant Biol 54:307–328. https://doi.org/10.1146/annurev.arplant.54.031902.135029 DOI
Kluepfel DA (1993) The behavior and tracking of bacteria in the rhizosphere. Ann Rev Phytopathol 31:441–472. https://doi.org/10.1146/annurev.py.31.090193.002301 DOI
Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Ann Rev Plant Biol 55:459–493. https://doi.org/10.1146/annurev.arplant.55.031903.141655 DOI
Kour D, Rana KL, Kumar R, Yadav N, Rastegari AA, Yadav AN et al (2019) Gene manipulation and regulation of catabolic genes for biodegradation of biphenyl compounds. In: Singh HB, Gupta VK, Jogaiah S (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 1–23. https://doi.org/10.1016/B978-0-444-63503-7.00001-2
Krishnamoorthy A, Agarwal T, Kotamreddy JNR, Bhattacharya R, Mitra A, Maiti TK et al (2020) Impact of seed-transmitted endophytic bacteria on intra-and inter-cultivar plant growth promotion modulated by certain sets of metabolites in rice crop. Microbiol Res 241:126582. https://doi.org/10.1016/j.micres.2020.126582
Kumar A, Bisht B, Joshi V, Dhewa T (2011) Review on bioremediation of polluted environment. A management tool. Int J Environmen Sci 1:1079
Kumar A, Droby S, Singh VK, Singh SK, White JF (2020a) Entry, colonization, and distribution of endophytic microorganisms in plants. In: Kumar A, Radhakrishnan EK (eds) Microbial Endophytes. Elsevier, Woodhead Publishing, pp 1–33. https://doi.org/10.1016/B978-0-12-819654-0.00001-6
Kumar S, Kaushik N (2013) Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PloS one 8:e56202. https://doi.org/10.1371/journal.pone.0056202
Kumar V, Jain L, Jain SK, Chaturvedi S, Kaushal P (2020b) Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. S Afr J Bot 134:50–63. https://doi.org/10.1016/j.sajb.2020.02.017 DOI
Kumar V, Kumar A, Pandey KD, Roy BK (2015) Isolation and characterization of bacterial endophytes from the roots of Cassia tora L. Ann Microbiol 65:1391–1399. https://doi.org/10.1007/s13213-014-0977-x DOI
Kumar V, Pathak DV, Dudeja SS, Saini R, Giri R, Narula S et al (2013) Legume nodule endophytes more diverse than endophytes from roots of legumes or non legumes in soils of Haryana, India. J Microbiol Biotech Res 3:83–92
Kuźniar A, Włodarczyk K, Grządziel J, Goraj W, Gałązka A, Wolińska A (2020) Culture-independent analysis of an endophytic core microbiome in two species of wheat Triticum aestivum L. (cv. ‘Hondia’) and the first report of microbiota in Triticum spelta L. (cv. ‘Rokosz’). Syst Appl Microbiol 43:126025. https://doi.org/10.1016/j.syapm.2019.126025
La Torre-Ruiz D, Ruiz-Valdiviezo VM, Rincón-Molina CI, Rodríguez-Mendiola M, Arias-Castro C, Gutiérrez-Miceli FA et al (2016) Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L. Braz J Microbiol 47:587–596. https://doi.org/10.1016/j.bjm.2016.04.010 PubMed DOI
Lacava PT, Silva-Stenico ME, Araújo WL, Simionato AVC, Carrilho E, Tsai SM et al (2008) Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca. Pesqui Agropecu Bras 43:521–528. https://doi.org/10.1590/S0100-204X2008000400011 DOI
Leite HAC, Silva AB, Gomes FP, Gramacho KP, Faria JC, de Souza JT et al (2013) Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth. Appl Microbiol Biotechnol 97:2639–2651. https://doi.org/10.1007/s00253-012-4574-2 PubMed DOI
Li J, Zhao GZ, Chen HH, Wang HB, Qin S, Zhu WY et al (2008a) Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. Lett Appl Microbiol 47:574–580. https://doi.org/10.1111/j.1472-765X.2008.02470.x PubMed DOI
Li JH, Wang ET, Chen WF, Chen WX (2008b) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246. https://doi.org/10.1016/j.soilbio.2007.08.014 DOI
Li L, Mohamad OAA, Ma J, Friel AD, Su Y, Wang Y et al (2018) Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie Van Leeuwenhoek 111:1735–1748. https://doi.org/10.1007/s10482-018-1062-4 PubMed DOI
Li T, Mann R, Kaur J, Spangenberg G, Sawbridge T (2021) Transcriptomics differentiate two novel bioactive strains of Paenibacillus sp. isolated from the perennial ryegrass seed microbiome. Sci Rep 11:1–16. https://doi.org/10.1038/s41598-021-94820-2 DOI
Liaqat F, Eltem R (2016) Identification and characterization of endophytic bacteria isolated from in vitro cultures of peach and pear rootstocks. 3 Biotech 6:1–8. https://doi.org/10.1007/s13205-016-0442-6
Lin B, Song Z, Jia Y, Zhang Y, Wang L, Fan J et al (2019) Biological characteristics and genome-wide sequence analysis of endophytic nitrogen-fixing bacteria Klebsiella variicola GN02. Biotechnol Biotechnol Equip 33:108–117. https://doi.org/10.1080/13102818.2018.1555010 DOI
Liu C, Wang X, Zhao J, Liu Q, Wang L, Guan X et al (2013) Streptomyces harbinensis sp. nov., an endophytic, ikarugamycin-producing actinomycete isolated from soybean root [Glycine max (L.) Merr.]. Int J Syst Evol Microbiol 63:3579–3584. https://doi.org/10.1099/ijs.0.050088-0 PubMed DOI
Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421. https://doi.org/10.1080/01490451.2011.576602 DOI
Liu H, Tang H, Ni X, Zhang Y, Wang Y (2022) Effects of the endophyte Epichloë coenophiala on the root microbial community and growth performance of tall fescue in different saline-alkali soils. Fungal Ecol 57:101159. https://doi.org/10.1016/j.funeco.2022.101159
Liu M, Li YH, Liu Y, Zhu JN, Liu QF, Liu Y et al (2011a) Flavobacterium phragmitis sp. nov., an endophyte of reed (Phragmites australis). Int J Syst Evol Microbiol 61:2717–2721. https://doi.org/10.1099/ijs.0.027417-0 PubMed DOI
Liu Y-H, Guo J-W, Salam N, Li L, Zhang Y-G, Han J et al (2016) Culturable endophytic bacteria associated with medicinal plant Ferula songorica molecular phylogeny, distribution and screening for industrially important traits. 3 Biotech 6:1–9. https://doi.org/10.1007/s13205-016-0522-7
Liu Y, Liu L, Qiu F, Schumann P, Shi Y, Zou Y et al (2010) Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 60:1266–1270. https://doi.org/10.1099/ijs.0.012179-0 PubMed DOI
Liu Y, Wang H, Sun X, Yang H, Wang Y, Song W (2011b) Study on mechanisms of colonization of nitrogen-fixing PGPB, Klebsiella pneumoniae NG14 on the root surface of rice and the formation of biofilm. Curr Microbiol 62:1113–1122. https://doi.org/10.1007/s00284-010-9835-7 PubMed DOI
Liu H, Zhang L, Meng A, Zhang J, Xie M, Qin Y et al. (2017) Isolation and molecular identification of endophytic diazotrophs from seeds and stems of three cereal crops. PLoS One 12:1–11. https://doi.org/10.1371/journal.pone.0187383
Loaces I, Ferrando L, Fernández Scavino A (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microbial Ecol 61:606–618. https://doi.org/10.1007/s00248-010-9780-9 DOI
Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I et al (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manage 156:62–69. https://doi.org/10.1016/j.jenvman.2015.03.024 PubMed DOI
Mahmood A, Kataoka R (2020) Metabolite profiling reveals a complex response of plants to application of plant growth-promoting endophytic bacteria. Microbiol Res 234:126421. https://doi.org/10.1016/j.micres.2020.126421
Malhi GS, Kaur M, Kaushik P (2021) Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 13:1318. https://doi.org/10.3390/su13031318 DOI
Marag PS, Suman A (2018) Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiol Res 214:101–113. https://doi.org/10.1016/j.micres.2018.05.016 PubMed DOI
Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S et al (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PloS One 7:e48479. https://doi.org/10.1371/journal.pone.0048479
Maropola MKA, Ramond J-B, Trindade M (2015) Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench). J Microbiol Methods 112:104–117. https://doi.org/10.1016/j.mimet.2015.03.012 PubMed DOI
Mastretta C, Taghavi S, Van Der Lelie D, Mengoni A, Galardi F, Gonnelli C et al (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediat 11:251–267. https://doi.org/10.1080/15226510802432678 DOI
Mbai F, Magiri E, Matiru V, Nganga J, Nyambati V (2013) Isolation and characterization of bacterial root endophytes with potential to enhance plant growth from Kenyan basmati rice. Am Int J Contemp Res 3:25–40
Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Tawab A et al (2020) Yucasin and cinnamic acid inhibit IAA and flavonoids biosynthesis minimizing interaction between maize and endophyte Aspergillus nomius. Symbiosis 81:149–160. https://doi.org/10.1007/s13199-020-00690-z DOI
Menéndez E, Carro L, Tejedor C, Fernández-Pascual M, Martínez-Molina E, Peix A et al (2016) Paenibacillus hispanicus sp. nov. isolated from Triticum aestivum roots. Int J Syst Evol 66:4628–4632. https://doi.org/10.1099/ijsem.0.001401 DOI
Mercado-Blanco J, Bakker PA (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92:367–389. https://doi.org/10.1007/s10482-007-9167-1 PubMed DOI
Mitchell C, Hawes C, Iannetta P, Birch ANE, Begg G, Karley AJ (2018) An agroecological approach for weed, pest and disease management in Rubus plantations. In: Graham J, Brennan R (eds) Raspberry. Springer, pp 63–81. https://doi.org/10.1007/978-3-319-99031-6_5
Molina G, Pimentel MR, Bertucci TC, Pastore GM (2012) Application of fungal endophytes in biotechnological processes. Chem Eng Trans 27:289–294
Montañez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28 DOI
Mora Y, Díaz R, Vargas-Lagunas C, Peralta H, Guerrero G, Aguilar A et al (2014) Nitrogen-fixing rhizobial strains isolated from common bean seeds: phylogeny, physiology, and genome analysis. Appl Environ Microbiol 80:5644–5654. https://doi.org/10.1128/AEM.01491-14 PubMed DOI PMC
Morrissey JP, Dow JM, Mark GL, O’Gara F (2004) Are microbes at the root of a solution to world food production? Rational exploitation of interactions between microbes and plants can help to transform agriculture. EMBO Rep 5:922–926. https://doi.org/10.1038/sj.embor.7400263 PubMed DOI PMC
Mousa WK, Shearer C, Limay-Rios V, Ettinger CL, Eisen JA, Raizada MN (2016) Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nat Microbiol 1:1–12. https://doi.org/10.1038/nmicrobiol.2016.167 DOI
Muangthong A, Youpensuk S, Rerkasem B (2015) Isolation and characterisation of endophytic nitrogen fixing bacteria in sugarcane. Trop Life Sci Res 26:41–51 PubMed PMC
Mukherjee A, Singh BK, Verma JP (2020) Harnessing chickpea (Cicer arietinum L.) seed endophytes for enhancing plant growth attributes and bio-controlling against Fusarium sp. Microbiol Res 237:126469. https://doi.org/10.1016/j.micres.2020.126469
Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138. https://doi.org/10.3389/fmicb.2015.00138 PubMed DOI PMC
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651. https://doi.org/10.1146/annurev.arplant.59.032607.092911 DOI
Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils 42:97–108. https://doi.org/10.1007/s00374-005-0008-y DOI
Nath R, Sharma G, Barooah M (2015) Plant growth promoting endophytic fungi isolated from tea (Camellia sinensis) shrubs of Assam, India. Appl Ecol Environ Res 13:877–891
Ngoma L, Esau B, Babalola OO (2013) Isolation and characterization of beneficial indigenous endophytic bacteria for plant growth promoting activity in Molelwane Farm Mafikeng, South Africa. Afr J Biotechnol 12:4105–4114
Nigris S, Baldan E, Tondello A, Zanella F, Vitulo N, Favaro G et al (2018) Biocontrol traits of Bacillus licheniformis GL174, a culturable endophyte of Vitis vinifera cv. Glera BMC Microbiol 18:1–16. https://doi.org/10.1186/s12866-018-1306-5 DOI
Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S (2014) Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol 118:683–694. https://doi.org/10.1016/j.funbio.2014.04.010 PubMed DOI
Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:1–16 DOI
Oliveira V, Gomes NC, Almeida A, Silva AM, Simões MM, Smalla K et al (2014) Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria. Mole Ecol 23:1392–1404. https://doi.org/10.1111/mec.12559 DOI
Ouattara A, Coulibaly K, Konate I, Ismaë B, Tidou AS, Filali-Maltouf A (2019) Selection of Cocoa tree (Theobroma cacao Linn) endophytic bacteria solubilizing tri-calcium phosphate, isolated from seedlings grown on soils of six producing regions of Côte d’Ivoire. Adv Microbiol 9:842–852 DOI
Ozanne P (1980) Phosphate nutrition of plants‐a general treatise. The role of phosphorus in agriculture: 559–589
Özkara A, Akyıl D, Konuk M (2016) Pesticides, environmental pollution, and health. In: Larramendy ML, Soloneski S (eds) Environmental health risk: hazardous factors to living species. IntechOpen. https://doi.org/10.5772/63094
Pahari A, Nayak SK, Banik A, Lakra PB, Mishra BB (2021) Biological nitrogen fixation mechanism and applications. In: Agriculturally Important Microorganisms. CRC Press, pp 137–151
Pancher M, Ceol M, Corneo PE, Longa CMO, Yousaf S, Pertot I et al (2012) Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. Appl Environ Microbiol 78:4308–4317. https://doi.org/10.1128/AEM.07655-11 PubMed DOI PMC
Pandey P, Kang S, Maheshwari D (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 89:177–180
Pandey PK, Singh S, Singh AK, Samanta R, Yadav RNS, Singh MC (2016) Inside the plant: bacterial endophytes and abiotic stress alleviation. J Appl Nat Sci 8:1899–1904. https://doi.org/10.31018/jans.v8i4.1059
Panigrahi S, Mohanty S, Rath C (2020) Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with Indole Acetic Acid (IAA) production and plant growth promoting capabilities against selected crops. S Afr J Bot 134:17–26. https://doi.org/10.1016/j.sajb.2019.09.017 DOI
Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007-impacts, adaptation and vulnerability: working group II contribution to the fourth assessment report of the IPCC, vol 4. Cambridge University Press
Patel JK, Agrawal R, Sidhdhapara R (2020) Root associated bacterial endophytes from Poaceae plants: identification, characterization and plant growth promotion. J Microbiol Biotechnol Food Sci 10:478–483 DOI
Patel JK, Archana G (2017) Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. Plant Soil 417:99–116. https://doi.org/10.1007/s11104-017-3244-7 DOI
Peng G, Yuan Q, Li H, Zhang W, Tan Z (2008) Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 58:2158–2163. https://doi.org/10.1099/ijs.0.65632-0 PubMed DOI
Peng G, Zhang W, Luo H, Xie H, Lai W, Tan Z (2009) Enterobacter oryzae sp. nov., a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia. Int J Syst Evol Microbiol 59:1650–1655. https://doi.org/10.1099/ijs.0.005967-0 PubMed DOI
Pereira S, Monteiro C, Vega A, Castro PM (2016) Endophytic culturable bacteria colonizing Lavandula dentata L. plants: isolation, characterization and evaluation of their plant growth-promoting activities. Ecol Eng 87:91–97. https://doi.org/10.1016/j.ecoleng.2015.11.033 DOI
Pham VT, Rediers H, Ghequire MG, Nguyen HH, De Mot R, Vanderleyden J et al (2017) The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Arch Microbiol 199:513–517. https://doi.org/10.1007/s00203-016-1332-3 PubMed DOI
Pimentel IC, Glienke-Blanco C, Gabardo J, Stuart RM, Azevedo JL (2006) Identification and colonization of endophytic fungi from soybean (Glycine max (L.) Merril) under different environmental conditions. Braz Arch Biol Technol 49:705–711. https://doi.org/10.1590/S1516-89132006000600003 DOI
Prieto P, Schilirò E, Maldonado-González MM, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol 62:435–445. https://doi.org/10.1007/s00248-011-9827-6 PubMed DOI PMC
Qadir M, Hussain A, Shah M, Lee IJ, Iqbal A, Irshad M et al (2022) Comparative assessment of chromate bioremediation potential of Pantoea conspicua and Aspergillus niger. J Hazard Mater 424:127314. https://doi.org/10.1016/j.jhazmat.2021.127314
Qadri M, Rajput R, Abdin MZ, Vishwakarma RA, Riyaz-Ul-Hassan S (2014) Diversity, molecular phylogeny, and bioactive potential of fungal endophytes associated with the Himalayan Blue Pine (Pinus wallichiana). Microb Ecol 67:877–887. https://doi.org/10.1007/s00248-014-0379-4 PubMed DOI
Qiu Z, Egidi E, Liu H, Kaur S, Singh BK (2019) New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol Adv 37:107371. https://doi.org/10.1016/j.biotechadv.2019.03.010
Quadt-Hallmann A, Kloepper J, Benhamou N (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43:577–582. https://doi.org/10.1139/m97-081 DOI
Rafi MM, Krishnaveni MS, Charyulu PBBN (2019) Phosphate-solubilizing microorganisms and their emerging role in sustainable agriculture. In: BuddollaV (eds) Recent developments in applied microbiology and biochemistry. Academic Press, pp 223–233. https://doi.org/10.1016/B978-0-12-816328-3.00017-9
Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D et al (2020) Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 49–60. https://doi.org/10.1016/B978-0-12-820526-6.00004-X
Raiten DJ, Aimone AM (2017) The intersection of climate/environment, food, nutrition and health: crisis and opportunity. Cur Opin Biotec 44:52–62. https://doi.org/10.1016/j.copbio.2016.10.006 DOI
Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160. https://doi.org/10.1016/j.chemosphere.2009.06.047 PubMed DOI
Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149. https://doi.org/10.1016/j.tibtech.2009.12.002 PubMed DOI
Rana KL, Kour D, Kaur T, Devi R, Yadav A, Yadav AN (2021) Bioprospecting of endophytic bacteria from the Indian Himalayas and their role in plant growth promotion of maize (Zea mays L.). J Appl Biol Biotechnol 9:41–50. https://doi.org/10.7324/JABB.2021.9306 DOI
Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N et al (2020a) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107. https://doi.org/10.1007/s10482-020-01429-y PubMed DOI
Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020b) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India Sect B Biol Sci 90:1–11. https://doi.org/10.1007/s40011-020-01168-0 DOI
Rana KL, Kour D, Yadav AN (2019a) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:1–30
Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) advances in endophytic fungal research: Present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6
Rangjaroen C, Rerkasem B, Teaumroong N, Noisangiam R, Lumyong S (2015) Promoting plant growth in a commercial rice cultivar by endophytic diazotrophic bacteria isolated from rice landraces. Ann Microbiol 65:253–266. https://doi.org/10.1007/s13213-014-0857-4 DOI
Rania ABA, Jabnoun-Khiareddine H, Nefzi A, Mokni-Tlili S, Daami-Remadi M (2016) Endophytic bacteria from Datura metel for plant growth promotion and bioprotection against Fusarium wilt in tomato. Biocontrol Sci Technol 26:1139–1165. https://doi.org/10.1080/09583157.2016.1188264 DOI
Rawat J, Sanwal P, Saxena J (2018) Towards the mechanisms of nutrient solubilization and fixation in soil system. In: Meena V (eds) Role of Rhizospheric Microbes in Soil. Springer, Singapore, pp 229–257. https://doi.org/10.1007/978-981-13-0044-8_8
Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581–1581. https://doi.org/10.1126/science.107805 PubMed DOI
Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443. https://doi.org/10.1016/j.pbi.2011.04.004 PubMed DOI
Renuka S, Ramanujam B (2016) Fungal endophytes from maize (Zea mays L.): isolation, identification and screening against maize stem borer, Chilo partellus (Swinhoe). J Pure Appl Microbiol 10:523–529
Roane T, Pepper I (1999) Microbial responses to environmentally toxic cadmium. Microb Ecol 38:358–364. https://doi.org/10.1007/s002489901001 PubMed DOI
Roesch LFW, de Quadros PD, Camargo FA, Triplett EW (2007) Screening of diazotrophic bacteria Azopirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Braz. World J Microbiol Biotechnol 23:1377–1383. https://doi.org/10.1007/s11274-007-9376-9 DOI
Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x PubMed DOI
Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol 55:74–81. https://doi.org/10.1002/jobm.201300173 PubMed DOI
Sandhiya G, Sugitha T, Balachandar D, Kumar K (2005) Endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice. Indian J Exp Biol 43:802–807 PubMed
Sandhya V, Shrivastava M, Ali SZ, Prasad VSSK (2017) Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russ Agric Sci 43:22–34. https://doi.org/10.3103/S1068367417010165
Santoyo G, Moreno-Hagelsieb G, del Carmen O-M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. https://doi.org/10.1016/j.micres.2015.11.008 PubMed DOI
Sara B, Faycal B, Claudio B, Olivier D, Ciro G, Markus E et al (2012) The state of soil in Europe: a contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report—SOER 2010
Schneijderberg M, Schmitz L, Cheng X, Polman S, Franken C, Geurts R et al (2018) A genetically and functionally diverse group of non-diazotrophic Bradyrhizobium spp. colonizes the root endophytic compartment of Arabidopsis thaliana. BMC Plant Biol 18:1–9. https://doi.org/10.1186/s12870-018-1272-y DOI
Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381. https://doi.org/10.1007/s00253-009-2116-3 PubMed DOI
Shabanamol S, Divya K, George TK, Rishad K, Sreekumar T, Jisha M (2018) Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa). Physiol Mol Plant Pathol 102:46–54. https://doi.org/10.1016/j.pmpp.2017.11.003 DOI
Shahwar D, Mushtaq Z, Mushtaq H, Alqarawi AA, Park Y, Alshahrani TS et al (2023) Role of microbial inoculants as bio fertilizers for improving crop productivity: a review. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e16134 PubMed DOI PMC
Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang S-M et al (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243. https://doi.org/10.1016/j.plaphy.2016.05.006 PubMed DOI
Sharma P, Vasudeva M (2005) Azide resistant mutants of Acetobacter diazotrophicus and Azospirillum brasilense increase yield and nitrogen content of cotton. J Plant Interact 1:145–149. https://doi.org/10.1080/17429140600997275 DOI
Sharma S, Kumar V, Tripathi RB (2011) Isolation of phosphate solubilizing microorganism (PSMs) from soil. J Microbiol Biotechnol Res 1:90–95
Sheng HM, Gao HS, Xue LG, Ding S, Song CL, Feng HY et al (2011) Analysis of the composition and characteristics of culturable endophytic bacteria within subnival plants of the Tianshan Mountains, northwestern China. Curr Microbiol 62:923–932. https://doi.org/10.1007/s00284-010-9800-5 PubMed DOI
Sheng X-F, Xia J-J, Jiang C-Y, He L-Y, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170. https://doi.org/10.1016/j.envpol.2008.04.007 PubMed DOI
Shore S, Sathisha G (2010) Screening of endophytic colonizing bacteria for cytokinin-like compounds: crude cell-free broth of endophytic colonizing bacteria is unsuitable in cucumber cotyledon bioassay. World J Agric Sci 6:345–352
Singh D, Rajawat MVS, Kaushik R, Prasanna R, Saxena AK (2017) Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant Soil 416:107–116. https://doi.org/10.1007/s11104-017-3189-x DOI
Singh D, Singh N, Chauhan S, Singh P (2011) Developing aluminium-tolerant crop plants using biotechnological tools. Curr Sci 100:1807–1814
Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore DOI
Singh MK, Kushwaha C, Singh RK (2009) Studies on endophytic colonization ability of two upland rice endophytes, Rhizobium sp. and Burkholderia sp., using green fluorescent protein reporter. Curr Microbiol 59:240–243. https://doi.org/10.1007/s00284-009-9419-6 PubMed DOI
Singh RP (2013) Isolation and characterization of multifarious plant growth promoting bacteria Enterobacter ludwigii PGP 19 isolated form pearl millet. Int J Sci Res 4:261–265. https://doi.org/10.1007/s10725-013-9870-z DOI
Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Proc Natl Acad Sci 96:4786–4790. https://doi.org/10.1073/pnas.96.9.4786 PubMed DOI PMC
Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502. https://doi.org/10.1128/mmbr.67.4.491-502.2003 PubMed DOI PMC
Subramanian P, Kim K, Krishnamoorthy R, Sundaram S, Sa T (2015a) Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regul 76:327–332. https://doi.org/10.1007/s10725-014-9993-x DOI
Subramanian P, Mageswari A, Kim K, Lee Y, Sa T (2015b) Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity. Mol Plant Microbe Interact 28:1073–1081. https://doi.org/10.1094/MPMI-01-15-0021-R PubMed DOI
Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) microbial inoculants in sustainable agricultural productivity: Vol. 1: Research Perspectives. Springer India, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7
Summerbell RC (2005) Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: influence of site factors on fungal distributions. Stud Mycol 53:121–145. https://doi.org/10.3114/sim.53.1.121 DOI
Sun R, Zhang X-X, Guo X, Wang D, Chu H (2015) Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem 88:9–18. https://doi.org/10.1016/j.soilbio.2015.05.007 DOI
Suyamud B, Thiravetyan P, Gadd GM, Panyapinyopol B, Inthorn D (2020) Bisphenol a removal from a plastic industry wastewater by Dracaena sanderiana endophytic bacteria and Bacillus cereus NI. Int J Phytoremediat 22:167–175. https://doi.org/10.1080/15226514.2019.1652563 DOI
Sziderics A, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202. https://doi.org/10.1139/W07-082 PubMed DOI
Szilagyi-Zecchin VJ, Adamoski D, Gomes RR, Hungria M, Ikeda AC, Kava-Cordeiro V et al (2016) Composition of endophytic fungal community associated with leaves of maize cultivated in south Brazilian field. Acta Microbiol Immunol Hung 63:449–466. https://doi.org/10.1556/030.63.2016.020 PubMed DOI
Tang SY, Hara S, Melling L, Goh KJ, Hashidoko Y (2010) Burkholderia vietnamiensis isolated from root tissues of nipa palm (Nypa fruticans) in Sarawak, Malaysia, proved to be its major endophytic nitrogen-fixing bacterium. Biosci Biotechnol Biochem 74:1972–1975. https://doi.org/10.1271/bbb.100397
Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol 30:719–725. https://doi.org/10.1007/s11274-013-1488-9 PubMed DOI
Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity – present and future aspects. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, pp 315–325, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_22
Tezara W, Mitchell V, Driscoll S, Lawlor D (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917. https://doi.org/10.1038/44842 DOI
Theocharis A, Clément C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–1105. https://doi.org/10.1007/s00425-012-1641-y PubMed DOI
Thomas P, Kumari S, Swarna GK, Gowda T (2007) Papaya shoot tip associated endophytic bacteria isolated from in vitro cultures and host endophyte interaction in vitro and in vivo. Can J Microbiol 53:380–390. https://doi.org/10.1139/W06-141 PubMed DOI
Tian X, Cao L, Tan H, Han W, Chen M, Liu Y et al (2007) Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microb Ecol 53:700–707. https://doi.org/10.1007/s00248-006-9163-4 PubMed DOI
Ting AS, Meon S, Kadir J, Radu S, Singh G (2008) Endophytic microorganisms as potential growth promoters of banana. Biocontrol 53:541–553. https://doi.org/10.1007/s10526-007-9093-1 DOI
Tripathi AK, Verma SC, Chowdhury SP, Lebuhn M, Gattinger A, Schloter M (2006) Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 56:1677–1680. https://doi.org/10.1099/ijs.0.63934-0 PubMed DOI
Tugarova A, Tarantilis PA, Gardiner P (2005) Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of. J Trace Elem Med Biol 19:91–95. https://doi.org/10.1016/j.jtemb.2005.03.002 PubMed DOI
Ullah A, Nisar M, Ali H, Hazrat A, Hayat K, Keerio AA et al (2019) Drought tolerance improvement in plants: an endophytic bacterial approach. Appl Microbiol Biotechnol 103:7385–7397. https://doi.org/10.1007/s00253-019-10045-4 PubMed DOI
UmaMaheswari T, Anbukkarasi K, Hemalatha T, Chendrayan K (2013) Studies on phytohormone producing ability of indigenous endophytic bacteria isolated from tropical legume crops. Int J Curr Microbiol Appl Sci 2:127–136
Valmorbida J, Boaro CSF (2007) Growth and development of Mentha piperita L. in nutrient solution as affected by rates of potassium. Braz Arch Biol Technol 50:379–384. https://doi.org/10.1590/S1516-89132007000300003 DOI
Van Bavel J (2013) The world population explosion: causes, backgrounds and projections for the future. Facts, Views & Vision in ObGyn 5:281
Vega FE, Pava-Ripoll M, Posada F, Buyer JS (2005) Endophytic bacteria in Coffea arabica L. J Basic Microbiol 45:371–380. https://doi.org/10.1002/jobm.200410551 PubMed DOI
Vendan RT, Yu YJ, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48:559–565. https://doi.org/10.1007/s12275-010-0082-1 PubMed DOI
Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A (2017a) Potassium solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microorganisms for green revolution: Volume 1: Microbes for Sustainable Crop Production. Springer Singapore, Singapore, pp 125–149. https://doi.org/10.1007/978-981-10-6241-4_7
Verma S, Kumar M, Kumar A, Das S, Chakdar H, Varma A et al (2022) Diversity of bacterial endophytes of maize (Zea mays) and their functional potential for micronutrient biofortification. Curr Microbiol 79:1–14. https://doi.org/10.1007/s00284-021-02702-7 DOI
Verma SK, Kingsley K, Bergen M, English C, Elmore M, Kharwar RN et al (2018) Bacterial endophytes from rice cut grass (Leersia oryzoides L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. Plant Soil 422:223–238. https://doi.org/10.1007/s11104-017-3339-1 DOI
Verma SK, Kingsley K, Irizarry I, Bergen M, Kharwar R, White J Jr (2017b) Seed-vectored endophytic bacteria modulate development of rice seedlings. J Appl Microbiol 122:1680–1691. https://doi.org/10.1111/jam.13463 PubMed DOI
Von Uexküll H, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15. https://doi.org/10.1007/BF00009558 DOI
Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa T (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol 17:1–13. https://doi.org/10.1186/s12866-017-1117-0 DOI
Wang C, Wang C, Gao Y-L, Wang Y-P, Guo J-H (2016) A consortium of three plant growth-promoting rhizobacterium strains acclimates Lycopersicon esculentum and confers a better tolerance to chilling stress. J Plant Growth Regul 35:54–64. https://doi.org/10.1007/s00344-015-9506-9 DOI
Wang Y, Yang X, Zhang X, Dong L, Zhang J, Wei Y et al (2014) Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H. J Agric Food Chem 62:1783–1791. https://doi.org/10.1021/jf404152u PubMed DOI
Wang Z, Solanki MK, Pang F, Singh RK, Yang L-T, Li Y-R et al (2017) Identification and efficiency of a nitrogen-fixing endophytic actinobacterial strain from sugarcane. Sugar Tech 19:492–500. https://doi.org/10.1007/s12355-016-0498-y DOI
Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99:2955–2965. https://doi.org/10.1007/s00253-015-6487-3 PubMed DOI
WeiXie L, Yang R, Liu B, Lei N, Peng S, Li J et al (2022) Effects of Pb-, Cd-resistant bacterium Pantoea sp. on growth, heavy metal uptake and bacterial communities in oligotrophic growth substrates of Lolium multiflorum Lam. Environ Sci Pollut Res 29:50742–50754. https://doi.org/10.1007/s11356-022-19180-4 DOI
West E, Cother E, Steel C, Ash G (2010) The characterization and diversity of bacterial endophytes of grapevine. Can J Microbiol 56:209–216. https://doi.org/10.1139/W10-004 PubMed DOI
White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84. https://doi.org/10.1111/j.1469-8137.2008.02738.x PubMed DOI
Wybouw B, De Rybel B (2019) Cytokinin–a developing story. Trends Plant Sci 24:177–185. https://doi.org/10.1016/j.tplants.2018.10.012 PubMed DOI
Xiao X, Chen W, Zong L, Yang J, Jiao S, Lin Y et al (2017) Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Mole Ecol 26:1641–1651. https://doi.org/10.1111/mec.14027 DOI
Xie H, Feng X, Wang M, Wang Y, Kumar Awasthi M, Xu P (2020) Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights. Bioengineered 11:1001–1015. https://doi.org/10.1080/21655979.2020.1816788 PubMed DOI PMC
Xing Y-X, Wei C-Y, Mo Y, Yang L-T, Huang S-L, Li Y-R (2016) Nitrogen-fixing and plant growth-promoting ability of two endophytic bacterial strains isolated from sugarcane stalks. Sugar Tech 18:373–379. https://doi.org/10.1007/s12355-015-0397-7 DOI
Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, San Diego, pp 305–332. https://doi.org/10.1016/B978-0-444-63987-5.00015-3
Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier Science, San Diego, pp 13–41. https://doi.org/10.1016/B978-0-444-63994-3.00002-3
Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017) Extreme cold environments: a suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4. https://doi.org/10.19080/AIBM.2017.02.555584
Yaish MW, Antony I, Glick BR (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek 107:1519–1532. https://doi.org/10.1007/s10482-015-0445-z PubMed DOI
Yamazaki Y, Someno T, Igarashi M, Kinoshita N, Hatano M, Kawada M et al (2015) Androprostamines A and B, the new anti-prostate cancer agents produced by Streptomyces sp. MK932-CF8. J Antibiot 68:279–285. https://doi.org/10.1038/ja.2014.135 DOI
Yan X, Wang Z, Mei Y, Wang L, Wang X, Xu Q, Peng S, Zhou Y, Wei C (2018) Isolation, diversity, and growth-promoting activities of endophytic bacteria from tea cultivars of Zijuan and Yunkang-10. Front Microbiol 9:1848. https://doi.org/10.3389/fmicb.2018.01848 PubMed DOI PMC
Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK et al (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420. https://doi.org/10.1007/s10725-012-9730-2 DOI
Yang F, Zhang R, Wu X, Xu T, Ahmad S, Zhang X et al (2020) An endophytic strain of the genus Bacillus isolated from the seeds of maize (Zea mays L.) has antagonistic activity against maize pathogenic strains. Microbl pathogen 142:104074. https://doi.org/10.1016/j.micpath.2020.104074
Yeo A (1998) Predicting the interaction between the effects of salinity and climate change on crop plants. Sci Hortic 78:159–174. https://doi.org/10.1016/S0304-4238(98)00193-9 DOI
Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Greer CW (2014) Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J 8:344–358. https://doi.org/10.1038/ismej.2013.163 PubMed DOI
Yuan Z-S, Liu F, Zhang G-F (2015) Characteristics and biodiversity of endophytic phosphorus and potassium solubilizing bacteria in moso bamboo (Phyllostachys edulis). Acta Biol Hung 66:449–459. https://doi.org/10.1556/018.66.2015.4.9 PubMed DOI
Zakria M, Njoloma J, Saeki Y, Akao S (2007) Colonization and nitrogen-fixing ability of Herbaspirillum sp. strain B501 gfp1 and assessment of its growth-promoting ability in cultivated rice. Microbes Environ 22:197–206. https://doi.org/10.1264/jsme2.22.197 DOI
Zakria M, Udonishi K, Ogawa T, Yamamoto A, Saeki Y, Akao S (2008) Influence of inoculation technique on the endophytic colonization of rice by Pantoea sp. isolated from sweet potato and by Enterobacter sp. isolated from sugarcane. Soil Sci Plant Nutri 54:224–236. https://doi.org/10.1111/j.1747-0765.2007.00233.x DOI
Zhang B, Salituro G, Szalkowski D, Li Z, Zhang Y, Royo I et al (1999) Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284:974–977. https://doi.org/10.1126/science.284.5416.974 PubMed DOI
Zhang F, Zhang H, Wang G, Xu L, Shen Z (2009) Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J Hazard Mater 168:76–84. https://doi.org/10.1016/j.jhazmat.2009.02.002 PubMed DOI
Zhang L, Gao J-S, Kim S-G, Zhang C-W, Jiang J-Q, Ma X-T et al (2016) Novosphingobium oryzae sp. nov., a potential plant-promoting endophytic bacterium isolated from rice roots. Int J Syst Evol Microbiol 66:302–307. https://doi.org/10.1099/ijsem.0.000718 PubMed DOI
Zhang Y-f, He L-y, Chen Z-j, Zhang W-h, Wang Q-y, Qian M et al (2011) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186:1720–1725. https://doi.org/10.1016/j.jhazmat.2010.12.069 PubMed DOI
Zhao L, Xu Y, Lai X-H, Shan C, Deng Z, Ji Y (2015) Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz J Microbiol 46:977–989. https://doi.org/10.1590/S1517-838246420140024 PubMed DOI PMC
Zhao Q-G (2002) The red soil material cycling and its regulation summary. Science Press, Publisher
Zhu B, Chen M, Lin L, Yang L, Li Y, An Q (2012) Genome sequence of Enterobacter sp. strain SP1, an endophytic nitrogen-fixing bacterium isolated from sugarcane. J Bacteriol 194:6963–6964. https://doi.org/10.1128/jb.01933-12 PubMed DOI PMC
Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate solubilizing halophilic bacterium Kushneria sp. YCWA 18 from Daqiao saltern on the coast of Yellow Sea of China. Evid base Compl Alternative Med 615032. https://doi.org/10.1155/2011/615032
Zou W, Meng J, Lu H, Chen G, Shi G, Zhang T et al (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530. https://doi.org/10.1021/np000204t PubMed DOI