Nejvíce citovaný článek - PubMed ID 29615539
Induction, regulation and roles of neural adhesion molecule L1CAM in cellular senescence
AIM: Our study aimed to assess expression of L1 cell adhesion molecule (L1CAM) in early-stage cervical squamous-cell cancer as a prognostic factor. PATIENTS AND METHODS: This retrospective, single-institution study included 154 patients who underwent radical hysterectomy for early-stage squamous cell cervical cancer between 2007 and 2017. Tumor samples from 154 patients were available for L1CAM analysis by immunohistochemistry. Among all patients, radical abdominal hysterectomy was performed in 144 cases. RESULTS: L1CAM expression was positive in 24 tumors (15.6%) of the whole group. In relation to the grade of differentiation and the presence of lymphovascular invasion, L1CAM expression did not show an association (p=0.154 and p=0.306, respectively). The disease-free interval and overall survival also did not significantly differ between L1CAM-positive and L1CAM-negative cases (p=0.427 and p=0.240, respectively). For histopathological characteristics, L1CAM-positive cases had a significantly higher median tumor size (p=0.015). Even in the selected group of 115 cases without nodal infiltration, L1CAM status had no effect on the relapse rate during follow-up. CONCLUSION: Our study did not confirm the results of previous studies showing L1CAM expression to be a negative prognostic factor in cervical cancer. In our study, increased L1CAM expression in early-stage squamous-cell cervical cancer was not associated with adverse prognosis regarding disease recurrence, disease-free survival, nor overall survival. L1CAM expression was correlated only with the size of the tumor.
- Klíčová slova
- L1 cell adhesion molecule, early stage, prognostic factor, squamous-cell cervical carcinoma,
- MeSH
- lidé MeSH
- lokální recidiva nádoru patologie MeSH
- molekula buněčné adheze nervové L1 * genetika analýza MeSH
- nádorové biomarkery metabolismus MeSH
- nádory děložního čípku * genetika patologie MeSH
- prognóza MeSH
- retrospektivní studie MeSH
- spinocelulární karcinom * patologie MeSH
- staging nádorů MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- L1CAM protein, human MeSH Prohlížeč
- molekula buněčné adheze nervové L1 * MeSH
- nádorové biomarkery MeSH
Cellular senescence is defined as irreversible cell cycle arrest caused by various processes that render viable cells non-functional, hampering normal tissue homeostasis. It has many endogenous and exogenous inducers, and is closely connected with age, age-related pathologies, DNA damage, degenerative disorders, tumor suppression and activation, wound healing, and tissue repair. However, the literature is replete with contradictory findings concerning its triggering mechanisms, specific biomarkers, and detection protocols. This may be partly due to the wide range of cellular and in vivo animal or human models of accelerated aging that have been used to study senescence and test senolytic drugs. This review summarizes recent findings concerning senescence, presents some widely used cellular and animal senescence models, and briefly describes the best-known senolytic agents.
- Klíčová slova
- aging, cellular model, mouse model, senescence, senolytics,
- MeSH
- biologické markery MeSH
- kontrolní body buněčného cyklu MeSH
- poškození DNA MeSH
- stárnutí buněk * genetika MeSH
- stárnutí * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH