Most cited article - PubMed ID 29909825
Haloalkane Dehalogenases From Marine Organisms
Haloalkane dehalogenases (HLDs) are a family of α/β-hydrolase fold enzymes that employ SN2 nucleophilic substitution to cleave the carbon-halogen bond in diverse chemical structures, the biological role of which is still poorly understood. Atomic-level knowledge of both the inner organization and supramolecular complexation of HLDs is thus crucial to understand their catalytic and noncatalytic functions. Here, crystallographic structures of the (S)-enantioselective haloalkane dehalogenase DmmarA from the waterborne pathogenic microbe Mycobacterium marinum were determined at 1.6 and 1.85 Å resolution. The structures show a canonical αβα-sandwich HLD fold with several unusual structural features. Mechanistically, the atypical composition of the proton-relay catalytic triad (aspartate-histidine-aspartate) and uncommon active-site pocket reveal the molecular specificities of a catalytic apparatus that exhibits a rare (S)-enantiopreference. Additionally, the structures reveal a previously unobserved mode of symmetric homodimerization, which is predominantly mediated through unusual L5-to-L5 loop interactions. This homodimeric association in solution is confirmed experimentally by data obtained from small-angle X-ray scattering. Utilizing the newly determined structures of DmmarA, molecular modelling techniques were employed to elucidate the underlying mechanism behind its uncommon enantioselectivity. The (S)-preference can be attributed to the presence of a distinct binding pocket and variance in the activation barrier for nucleophilic substitution.
- Keywords
- DmmarA, Mycobacterium marinum, SAXS, X-ray crystallography, enantioselectivity, haloalkane dehalogenases, homodimerization, surface loops,
- MeSH
- Hydrolases chemistry MeSH
- Aspartic Acid MeSH
- Mycobacterium marinum * metabolism MeSH
- Stereoisomerism MeSH
- Substrate Specificity MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- haloalkane dehalogenase MeSH Browser
- Hydrolases MeSH
- Aspartic Acid MeSH
Haloalkane dehalogenases (EC 3.8.1.5) play an important role in hydrolytic degradation of halogenated compounds, resulting in a halide ion, a proton, and an alcohol. They are used in biocatalysis, bioremediation, and biosensing of environmental pollutants and also for molecular tagging in cell biology. The method of ancestral sequence reconstruction leads to prediction of sequences of ancestral enzymes allowing their experimental characterization. Based on the sequences of modern haloalkane dehalogenases from the subfamily II, the most common ancestor of thoroughly characterized enzymes LinB from Sphingobium japonicum UT26 and DmbA from Mycobacterium bovis 5033/66 was in silico predicted, recombinantly produced and structurally characterized. The ancestral enzyme AncLinB-DmbA was crystallized using the sitting-drop vapor-diffusion method, yielding rod-like crystals that diffracted X-rays to 1.5 Å resolution. Structural comparison of AncLinB-DmbA with their closely related descendants LinB and DmbA revealed some differences in overall structure and tunnel architecture. Newly prepared AncLinB-DmbA has the highest active site cavity volume and the biggest entrance radius on the main tunnel in comparison to descendant enzymes. Ancestral sequence reconstruction is a powerful technique to study molecular evolution and design robust proteins for enzyme technologies.
- Keywords
- ancestral sequence reconstruction, haloalkane dehalogenase, halogenated pollutants, structural analysis,
- MeSH
- Hydrolases chemistry metabolism MeSH
- Hydrolysis MeSH
- Catalytic Domain MeSH
- Crystallography, X-Ray methods MeSH
- Evolution, Molecular MeSH
- Models, Molecular MeSH
- Mycobacterium bovis enzymology MeSH
- Protein Engineering methods MeSH
- Sequence Analysis, Protein methods MeSH
- Sphingomonadaceae enzymology MeSH
- Binding Sites MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- haloalkane dehalogenase MeSH Browser
- Hydrolases MeSH
Halide assays are important for the study of enzymatic dehalogenation, a topic of great industrial and scientific importance. Here we describe the development of a very sensitive halide assay that can detect less than a picomole of bromide ions, making it very useful for quantifying enzymatic dehalogenation products. Halides are oxidised under mild conditions using the vanadium-dependent chloroperoxidase from Curvularia inaequalis, forming hypohalous acids that are detected using aminophenyl fluorescein. The assay is up to three orders of magnitude more sensitive than currently available alternatives, with detection limits of 20 nM for bromide and 1 μM for chloride and iodide. We demonstrate that the assay can be used to determine specific activities of dehalogenases and validate this by comparison to a well-established GC-MS method. This new assay will facilitate the identification and characterisation of novel dehalogenases and may also be of interest to those studying other halide-producing enzymes.
- Keywords
- dehalogenase, fluorescence, halides, haloalkane, haloperoxidase,
- Publication type
- Journal Article MeSH