Most cited article - PubMed ID 29909905
Dysfunction of HPV16-specific CD8+ T cells derived from oropharyngeal tumors is related to the expression of Tim-3 but not PD-1
Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous disease that affects more than 800,000 patients worldwide each year. The variability of HNSCC is associated with differences in the carcinogenesis processes that are caused by two major etiological agents, namely, alcohol/tobacco, and human papillomavirus (HPV). Compared to non-virally induced carcinomas, the oropharyngeal tumors associated with HPV infection show markedly better clinical outcomes and are characterized by an immunologically "hot" landscape with high levels of tumor-infiltrating lymphocytes. However, the standard of care remains the same for both HPV-positive and HPV-negative HNSCC. Surprisingly, treatment de-escalation trials have not shown any clinical benefit in patients with HPV-positive tumors to date, most likely due to insufficient patient stratification. The in-depth analysis of the immune response, which places an emphasis on tumor-infiltrating immune cells, is a widely accepted prognostic tool that might significantly improve both the stratification of HNSCC patients in de-escalation trials and the development of novel immunotherapeutic approaches.
BACKGROUND: Standard treatment of oropharyngeal squamous cell carcinoma (OPSCC) is associated with high morbidity, whereas immunotherapeutic approaches using PD-1:PD-L1 checkpoint blockade only show moderate response rates in OPSCC patients. Therefore, a better stratification of patients and the development of novel therapeutic protocols are crucially needed. The importance of tumor-infiltrating B cells (TIL-Bs) in shaping antitumor immunity remains unclear; therefore, we analyzed frequency, phenotype, prognostic value and possible roles of TIL-Bs in OPSCC. METHODS: We utilized transcriptomic analysis of immune response-related genes in 18 OPSCC samples with respect to human papillomavirus (HPV) status. The density and localization of CD20+, CD8+ and DC-LAMP+ cells were subsequently analyzed in 72 tissue sections of primary OPSCC samples in relation to patients' prognosis. The immunohistochemical approach was supplemented by flow cytometry-based analysis of phenotype and functionality of TIL-Bs in freshly resected primary OPSCC tissues. RESULTS: We observed significantly higher expression of B cell-related genes and higher densities of CD20+ B cells in HPV-associated OPSCC samples. Interestingly, CD20+ TIL-Bs and CD8+ T cells formed non-organized aggregates with interacting cells within the tumor tissue. The densities of both intraepithelial CD20+ B cells and B cell/CD8+ T cell interactions showed prognostic significance, which surpassed HPV positivity and CD8+ TIL density in stratification of OPSCC patients. High density of TIL-Bs was associated with an activated B cell phenotype, high CXCL9 production and high levels of tumor-infiltrating CD8+ T cells. Importantly, the abundance of direct B cell/CD8+ T cell interactions positively correlated with the frequency of HPV16-specific CD8+ T cells, whereas the absence of B cells in tumor-derived cell cultures markedly reduced CD8+ T cell survival. CONCLUSIONS: Our results indicate that high abundance of TIL-Bs and high density of direct B cell/CD8+ T cell interactions can predict patients with excellent prognosis, who would benefit from less invasive treatment. We propose that in extensively infiltrated tumors, TIL-Bs might recruit CD8+ T cells via CXCL9 and due to a highly activated phenotype contribute by secondary costimulation to the maintenance of CD8+ T cells in the tumor microenvironment.
- Keywords
- HNSCC, HPV, Tumor-infiltrating B lymphocytes,
- MeSH
- Chemoradiotherapy, Adjuvant MeSH
- Lymphocyte Activation MeSH
- B-Lymphocytes immunology MeSH
- CD8-Positive T-Lymphocytes immunology MeSH
- Squamous Cell Carcinoma of Head and Neck immunology mortality therapy virology MeSH
- Adult MeSH
- Papillomavirus Infections immunology mortality therapy virology MeSH
- Kaplan-Meier Estimate MeSH
- Cohort Studies MeSH
- Neck Dissection MeSH
- Middle Aged MeSH
- Humans MeSH
- Cell Communication immunology MeSH
- Tumor Microenvironment immunology MeSH
- Oropharyngeal Neoplasms immunology mortality therapy virology MeSH
- Oropharynx pathology surgery MeSH
- Papillomaviridae immunology isolation & purification MeSH
- Prognosis MeSH
- Disease Progression MeSH
- Aged MeSH
- Lymphocytes, Tumor-Infiltrating immunology MeSH
- Patient Selection MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Similarly to other types of malignant tumours, the incidence of head and neck cancer is increasing globally. It is frequently associated with smoking and alcohol abuse, and in a broader sense also with prolonged exposure to these factors during ageing. A higher incidence of tumours observed in younger populations without a history of alcohol and tobacco abuse may be due to HPV infection. Malignant tumours form an intricate ecosystem of cancer cells, fibroblasts, blood/lymphatic capillaries and infiltrating immune cells. This dynamic system, the tumour microenvironment, has a significant impact on the biological properties of cancer cells. The microenvironment participates in the control of local aggressiveness of cancer cells, their growth, and their consequent migration to lymph nodes and distant organs during metastatic spread. In cancers originating from squamous epithelium, a similarity was demonstrated between the cancer microenvironment and healing wounds. In this review, we focus on the specificity of the microenvironment of head and neck cancer with emphasis on the mechanism of intercellular crosstalk manipulation for potential therapeutic application.
- Keywords
- IL-6, cancer, cancer ecosystem, cancer microenvironment, cancer therapy, cancer-associated fibroblast, cytokine, extracellular matrix, tumour-associated macrophages,
- Publication type
- Journal Article MeSH
- Review MeSH