Nejvíce citovaný článek - PubMed ID 29914800
BACKGROUND: Respiratory syncytial virus (RSV) infections are one of the leading causes of lower respiratory tract infections and have a major burden on society. For prevention and control to be deployed effectively, an improved understanding of the seasonality of RSV is necessary. OBJECTIVES: The main objective of this study was to contribute to a better understanding of RSV seasonality by examining the GERi multi-country surveillance dataset. METHODS: RSV seasons were included in the analysis if they contained ≥100 cases. Seasonality was determined using the "average annual percentage" method. Analyses were performed at a subnational level for the United States and Brazil. RESULTS: We included 601 425 RSV cases from 12 countries. Most temperate countries experienced RSV epidemics in the winter, with a median duration of 10-21 weeks. Not all epidemics fit this pattern in a consistent manner, with some occurring later or in an irregular manner. More variation in timing was observed in (sub)tropical countries, and we found substantial differences in seasonality at a subnational level. No association was found between the timing of the epidemic and the dominant RSV subtype. CONCLUSIONS: Our findings suggest that geographical location or climatic characteristics cannot be used as a definitive predictor for the timing of RSV epidemics and highlight the need for (sub)national data collection and analysis.
- Klíčová slova
- epidemiology, respiratory syncytial virus, seasonality, surveillance,
- MeSH
- epidemie * MeSH
- infekce dýchací soustavy * epidemiologie MeSH
- infekce respiračními syncytiálními viry * epidemiologie MeSH
- kojenec MeSH
- lidé MeSH
- lidský respirační syncytiální virus * MeSH
- roční období MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Spojené státy americké epidemiologie MeSH
Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infections and hospitalisations among young children and is globally responsible for many deaths in young children, especially in infants aged <6 months. Furthermore, RSV is a common cause of severe respiratory disease and hospitalisation among older adults. The development of new candidate vaccines and monoclonal antibodies highlights the need for reliable surveillance of RSV. In the European Union (EU), no up-to-date general recommendations on RSV surveillance are currently available. Based on outcomes of a workshop with 29 European experts in the field of RSV virology, epidemiology and public health, we provide recommendations for developing a feasible and sustainable national surveillance strategy for RSV that will enable harmonisation and data comparison at the European level. We discuss three surveillance components: active sentinel community surveillance, active sentinel hospital surveillance and passive laboratory surveillance, using the EU acute respiratory infection and World Health Organization (WHO) extended severe acute respiratory infection case definitions. Furthermore, we recommend the use of quantitative reverse transcriptase PCR-based assays as the standard detection method for RSV and virus genetic characterisation, if possible, to monitor genetic evolution. These guidelines provide a basis for good quality, feasible and affordable surveillance of RSV. Harmonisation of surveillance standards at the European and global level will contribute to the wider availability of national level RSV surveillance data for regional and global analysis, and for estimation of RSV burden and the impact of future immunisation programmes.
- MeSH
- dítě MeSH
- hospitalizace MeSH
- infekce dýchací soustavy * diagnóza epidemiologie MeSH
- infekce respiračními syncytiálními viry * diagnóza epidemiologie prevence a kontrola MeSH
- kojenec MeSH
- lidé MeSH
- lidský respirační syncytiální virus * MeSH
- předškolní dítě MeSH
- senioři MeSH
- sentinelová surveillance MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- předškolní dítě MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Viral infections have recently emerged not only as a health threat to people but rapidly became the cause of universal fatality on a large scale. Nanomaterials comprising functionalized nanoparticles (NPs) and quantum dots and nanotechnology-associated innovative detection methods, vaccine design, and nanodrug production have shown immense promise for interfacing with pathogenic viruses and restricting their entrance into cells. These viruses have been scrutinized using rapid diagnostic detection and therapeutic interventional options against the caused infections including vaccine development for prevention and control. Coronaviruses, namely SARS-CoV, MERS-CoV, and SARS-CoV-2, have endangered human life, and the COVID-19 (caused by SARS-CoV-2) outbreak has become a perilous challenge to public health globally with huge accompanying morbidity rates. Thus, it is imperative to expedite the drug and vaccine development efforts that would help mitigate this pandemic. In this regard, smart and innovative nano-based technologies and approaches encompassing applications of green nanomedicine, bio-inspired methods, multifunctional bioengineered nanomaterials, and biomimetic drug delivery systems/carriers can help resolve the critical issues regarding detection, prevention, and treatment of viral infections. This perspective review expounds recent nanoscience advancements for the detection and treatment of viral infections with focus on coronaviruses and encompasses nano-based formulations and delivery platforms, nanovaccines, and promising methods for clinical diagnosis, especially regarding SARS-CoV-2.
- Klíčová slova
- COVID-19, SARS-CoV-2, coronaviruses, graphene oxide, nanoparticles, nanotechnology, nanovaccines, quantum dots, viral infections,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH