Nejvíce citovaný článek - PubMed ID 30002673
Acoustical Enrichment during Early Development Improves Response Reliability in the Adult Auditory Cortex of the Rat
The LIM homeodomain transcription factor ISL1 is essential for the different aspects of neuronal development and maintenance. In order to study the role of ISL1 in the auditory system, we generated a transgenic mouse (Tg) expressing Isl1 under the Pax2 promoter control. We previously reported a progressive age-related decline in hearing and abnormalities in the inner ear, medial olivocochlear system, and auditory midbrain of these Tg mice. In this study, we investigated how Isl1 overexpression affects sound processing by the neurons of the inferior colliculus (IC). We recorded extracellular neuronal activity and analyzed the responses of IC neurons to broadband noise, clicks, pure tones, two-tone stimulation and frequency-modulated sounds. We found that Tg animals showed a higher inhibition as displayed by two-tone stimulation; they exhibited a wider dynamic range, lower spontaneous firing rate, longer first spike latency and, in the processing of frequency modulated sounds, showed a prevalence of high-frequency inhibition. Functional changes were accompanied by a decreased number of calretinin and parvalbumin positive neurons, and an increased expression of vesicular GABA/glycine transporter and calbindin in the IC of Tg mice, compared to wild type animals. The results further characterize abnormal sound processing in the IC of Tg mice and demonstrate that major changes occur on the side of inhibition.
- Klíčová slova
- auditory system, inferior colliculus, inhibition, sound processing, transcription factor ISL1,
- MeSH
- colliculus inferior metabolismus fyziologie MeSH
- exprese genu genetika MeSH
- lidé MeSH
- mozek fyziologie MeSH
- myši transgenní MeSH
- myši MeSH
- neurony fyziologie MeSH
- promotorové oblasti (genetika) genetika MeSH
- proteiny s homeodoménou LIM genetika metabolismus MeSH
- sluch MeSH
- sluchová percepce genetika fyziologie MeSH
- sluchové kmenové evokované potenciály fyziologie MeSH
- sluchový práh fyziologie MeSH
- transkripční faktor PAX2 genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- insulin gene enhancer binding protein Isl-1 MeSH Prohlížeč
- PAX2 protein, human MeSH Prohlížeč
- Pax2 protein, mouse MeSH Prohlížeč
- proteiny s homeodoménou LIM MeSH
- transkripční faktor PAX2 MeSH
- transkripční faktory MeSH
Throughout life, sensory systems adapt to the sensory environment to provide optimal responses to relevant tasks. In the case of a developing system, sensory inputs induce changes that are permanent and detectable up to adulthood. Previously, we have shown that rearing rat pups in a complex acoustic environment (spectrally and temporally modulated sound) from postnatal day 14 (P14) to P28 permanently improves the response characteristics of neurons in the inferior colliculus and auditory cortex, influencing tonotopical arrangement, response thresholds and strength, and frequency selectivity, along with stochasticity and the reproducibility of neuronal spiking patterns. In this study, we used a set of behavioral tests based on a recording of the acoustic startle response (ASR) and its prepulse inhibition (PPI), with the aim to extend the evidence of the persistent beneficial effects of the developmental acoustical enrichment. The enriched animals were generally not more sensitive to startling sounds, and also, their PPI of ASR, induced by noise or pure tone pulses, was comparable to the controls. They did, however, exhibit a more pronounced PPI when the prepulse stimulus was represented either by a change in the frequency of a background tone or by a silent gap in background noise. The differences in the PPI of ASR between the enriched and control animals were significant at lower (55 dB SPL), but not at higher (65-75 dB SPL), intensities of background sound. Thus, rearing pups in the acoustically enriched environment led to an improvement of the frequency resolution and gap detection ability under more difficult testing conditions, i.e., with a worsened stimulus clarity. We confirmed, using behavioral tests, that an acoustically enriched environment during the critical period of development influences the frequency and temporal processing in the auditory system, and these changes persist until adulthood.
- MeSH
- akustická stimulace metody MeSH
- kritické období (psychologie) * MeSH
- krysa rodu Rattus MeSH
- novorozená zvířata MeSH
- potkani Long-Evans MeSH
- rozlišení výšky zvuku fyziologie MeSH
- sluchová percepce fyziologie MeSH
- sluchové kmenové evokované potenciály fyziologie MeSH
- úleková reakce fyziologie MeSH
- věkové faktory MeSH
- životní prostředí * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH