Most cited article - PubMed ID 30060837
Distribution of Connective Tissue in the Male and Female Porcine Liver: Histological Mapping and Recommendations for Sampling
For liver fibrosis assessment, the liver biopsy is usually stained with Masson's trichrome (MT) or picrosirius red (PSR) to quantify liver connective tissue (LCT) for fibrosis scoring. However, several concerns of such semiquantitative assessments have been raised, and when searching for data on the amount of LCT in healthy rats, the results vastly differ. Regarding the ongoing reproducibility crisis in science, it is necessary to inspect the results and methods, and to design an unbiased and reproducible method of LCT assessment. We searched the Medline database using search terms related to liver fibrosis, LCT and collagen, rat strains, and staining methods. Our search identified 74 eligible rat groups in 57 studies. We found up to 170-fold differences in the amount of LCT among healthy Wistar and Sprague-Dawley rats, with significant differences even within individual studies. Biased sampling and quantification probably caused the observed differences. In addition, we also found incorrect handling of liver fibrosis scoring. Assessment of LCT using stereological sampling methods (such as systematic uniform sampling) would provide us with unbiased data. Such data could eventually be used not only for the objective assessment of liver fibrosis but also for validation of noninvasive methods of the assessment of early stages of liver fibrosis.
- Keywords
- biopsy, collagen proportionate area, connective tissue, fibrosis, liver, quantification, stereology,
- Publication type
- Journal Article MeSH
BACKGROUND/AIM: Patients with unresectable liver colorectal cancer metastases are treated with neoadjuvant chemotherapy often accompanied by biological therapy aimed at reducing the mass of metastases and thus increasing the chances of resectability. Bevacizumab comprises an anti-VEGF (vascular endothelial growth factor) humanized IgG monoclonal antibody that is used for biological therapy purposes. It acts to inhibit angiogenesis, thereby slowing down the growth of metastases. Due to its being administered systematically, bevacizumab also exerts an effect on the surrounding healthy liver parenchyma and potentially limits the process of neovascularization and thus regeneration of the liver. Since the remnant liver volume forms an important factor in postoperative morbidity and mortality following a major hepatectomy, we decided to study the effect of bevacizumab on vascular and biliary microarchitecture in healthy liver parenchyma and its ability to regenerate following major hepatectomy. MATERIALS AND METHODS: We performed an experiment employing a large animal model where a total of 16 piglets were divided into two groups (8 piglets in the control group and 8 piglets in the experimental group with bevacizumab). All the animals were subjected to major hepatectomy and the experimental group was given bevacizumab prior to hepatectomy. All the animals were sacrificed after 4 weeks. We performed biochemical analyses at regular time intervals during the follow-up period. Histological examination of the liver tissue was performed following sacrifice of the animals. RESULTS: No statistical difference was shown between groups in terms of the biochemical and immunohistochemical parameters. The histological examination of the regenerating liver tissue revealed the higher length density of sinusoids in the experimental group. CONCLUSION: Bevacizumab does not act to impair liver regeneration following hepatectomy.
- Keywords
- Bevacizumab, anti-VEGF, hepatectomy, liver regeneration,
- MeSH
- Bevacizumab pharmacology therapeutic use MeSH
- Hepatectomy MeSH
- Antibodies, Monoclonal, Humanized pharmacology therapeutic use MeSH
- Colorectal Neoplasms * drug therapy pathology surgery MeSH
- Humans MeSH
- Disease Models, Animal MeSH
- Liver Neoplasms * drug therapy secondary surgery MeSH
- Neovascularization, Pathologic drug therapy MeSH
- Swine MeSH
- Liver Regeneration MeSH
- Vascular Endothelial Growth Factor A MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bevacizumab MeSH
- Antibodies, Monoclonal, Humanized MeSH
- Vascular Endothelial Growth Factor A MeSH
In liver surgery, biliary obstruction can lead to secondary biliary cirrhosis, a life-threatening disease with liver transplantation as the only curative treatment option. Mesenchymal stromal cells (MSC) have been shown to improve liver function in both acute and chronic liver disease models. This study evaluated the effect of allogenic MSC transplantation in a large animal model of repeated biliary obstruction followed by partial hepatectomy. MSC transplantation supported the growth of regenerated liver tissue after 14 days (MSC group, n = 10: from 1087 ± 108 (0 h) to 1243 ± 92 mL (14 days); control group, n = 11: from 1080 ± 95 (0 h) to 1100 ± 105 mL (14 days), p = 0.016), with a lower volume fraction of hepatocytes in regenerated liver tissue compared to resected liver tissue (59.5 ± 10.2% vs. 70.2 ± 5.6%, p < 0.05). Volume fraction of connective tissue, blood vessels and bile vessels in regenerated liver tissue, serum levels of liver enzymes (AST, ALT, ALP and GGT) and liver metabolites (albumin, bilirubin, urea and creatinine), as well as plasma levels of IL-6, IL-8, TNF-α and TGF-β, were not affected by MSC transplantation. In our novel, large animal (pig) model of repeated biliary obstruction followed by partial hepatectomy, MSC transplantation promoted growth of liver tissue without any effect on liver function. This study underscores the importance of translating results between small and large animal models as well as the careful translation of results from animal model into human medicine.
- Keywords
- hepatectomy, mesenchymal stromal cell, pig model, quantitative histology, secondary biliary cirrhosis,
- MeSH
- Cholestasis complications MeSH
- Mesenchymal Stem Cells MeSH
- Disease Models, Animal * MeSH
- Liver Diseases etiology pathology therapy MeSH
- Swine MeSH
- Mesenchymal Stem Cell Transplantation methods MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH