Nejvíce citovaný článek - PubMed ID 30104017
Occurrence of microplastics in raw and treated drinking water
Metal-organic frameworks (MOFs) are attracting increasing attention as adsorbents of contaminants of emerging concern that are difficult to remove by conventional processes. This paper examines how functional groups covering the pore walls of phosphinate-based MOFs affect the adsorption of specific pharmaceutical pollutants (diclofenac, cephalexin, and sulfamethoxazole) and their hydrolytic stability. New structures, isoreticular to the phosphinate MOF ICR-7, are presented. The phenyl ring facing the pore wall of the presented MOFs is modified with dimethylamino groups (ICR-8) and ethyl carboxylate groups (ICR-14). These functionalized MOFs were obtained from two newly synthesized phosphinate linkers containing the respective functional groups. The presence of additional functional groups resulted in higher affinity toward the tested pollutants compared to ICR-7 or activated carbon. However, this modification also comes with a reduced adsorption capacity. Importantly, the introduction of the functional groups enhanced the hydrolytic stability of the MOFs.
- Publikační typ
- časopisecké články MeSH
Wasted synthetic fabrics are a type of textile waste source; the reuse of them brings environmental protection and turns waste into a valuable material. In this work, the used nylon (polyamide) stockings were transmuted into a fine fibrous membrane via an electrospinning process. In addition, the safety antibacterial agent, monoacylglycerol (MAG), was incorporated into a recycled fibrous membrane. The results revealed that the neat, recycled polyamide (rPA) fibers with a hydrophobic surface could be converted into hydrophilic fibers by blending various amounts of MAG with rPA solution prior to electrospinning. The filtration efficiency and air/water vapor permeability of the two types of produced membranes, neat rPA, and rPA/MAG, were tested. Their filtration efficiency (E100) was more than 92% and 96%, respectively. The membranes were classified according to Standard EN1822, and therefore, the membranes rPA and rPA/MAG were assigned to the classes E10 and E11, respectively. The air permeability was not affected by the addition of MAG, and water vapor permeability was slightly enhanced. Based on the obtained data, prepared rPA/MAG fibrous membranes can be evaluated as antifouling against both tested bacterial strains and antimicrobial against S. aureus.
- Klíčová slova
- antibacterial membrane, electrospinning, filtration, polyamide, recycling of textile waste, stocking,
- Publikační typ
- časopisecké články MeSH