Nejvíce citovaný článek - PubMed ID 30177582
Electrospun vascular grafts fabricated from poly(L-lactide-co-ε-caprolactone) used as a bypass for the rabbit carotid artery
The use of electrospun polymeric biodegradable materials for medical applications is becoming increasingly widespread. One of the most important parameters regarding the functionality of nanofiber scaffolds during implantation and the subsequent regeneration of damaged tissues concerns their stability and degradation behavior, both of which are influenced by a wide range of factors (the properties of the polymer and the polymer solution, the technological processing approach, the sterilization method, etc.). This study monitored the degradation of nanofibrous materials fabricated from degradable polyesters as a result of the sterilization method applied (ethylene oxide and gamma irradiation) and the solvent system used to prepare the spun polymer solution. Aliphatic polyesters PCL and PLCL were chosen for this study and selected with respect to the applicability and handling in the surgical setting of these nanofibrous materials for vascular bandaging. The results revealed that the choice of solvent system exerts a significant impact on degradation during sterilization, especially at higher gamma irradiation values. The subsequent enzyme-catalyzed degradation of the materials following sterilization indicated that the choice of the sterilization method influenced the degradation behavior of the materials. Whereas wave-like degradation was evident concerning ethylene oxide sterilization, no such behavior was observed following gamma-irradiation sterilization. With concern for some of the tested materials, the results also indicated the potential for influencing the development of degradation within the bulk versus degradation from the surface of the material. Both the sterilization method and the choice of the spinning solvent system were found to impact degradation, which was observed to be most accelerated in the case of PLCL (L-lactide-co-caprolactone copolymer) electrospun from organic acids and subsequently sterilized using gamma irradiation. Since we planned to use these materials in cardiovascular applications, it was decided that their hemocompatibility would also be tested. The results of these tests revealed that changes in the structures of the materials initiated by sterilization may exert thrombogenic and anticoagulant impacts. Moreover, the microscopic analysis suggested that the solvent system used in the preparation of the materials potentially affects the behavior of erythrocytes; however, no indication of the occurrence of hemolysis was detected.
- Klíčová slova
- biodegradable polyester, electrospun nanofibers, enzymatically catalyzed degradation, ethylene oxide, gamma irradiation, hemocompatibility, sterilization,
- Publikační typ
- časopisecké články MeSH
Diabetic foot ulcer (DFU) is a serious complication of diabetes and hyperbaric oxygen therapy (HBOT) is also considered in comprehensive treatment. The evidence supporting the use of HBOT in DFU treatment is controversial. The aim of this work was to introduce a DFU model in ZDF rat by creating a wound on the back of an animal and to investigate the effect of HBOT on the defect by macroscopic evaluation, quantitative histological evaluation of collagen (types I and III), evaluation of angiogenesis and determination of interleukin 6 (IL6) levels in the plasma. The study included 10 rats in the control group (CONT) and 10 in the HBOT group, who underwent HBOT in standard clinical regimen. Histological evaluation was performed on the 18th day after induction of defect. The results show that HBOT did not affect the macroscopic size of the defect nor IL6 plasma levels. A volume fraction of type I collagen was slightly increased by HBOT without reaching statistical significance (1.35+/-0.49 and 1.94+/-0.67 %, CONT and HBOT, respectively). In contrast, the collagen type III volume fraction was ~120 % higher in HBOT wounds (1.41+/-0.81 %) than in CONT ones (0.63+/-0.37 %; p=0.046). In addition, the ratio of the volume fraction of both collagens in the wound ((I+III)w) to the volume fraction of both collagens in the adjacent healthy skin ((I+III)h) was ~65 % higher in rats subjected to HBOT (8.9+/-3.07 vs. 5.38+/-1.86 %, HBOT and CONT, respectively; p=0.028). Vessels density (number per 1 mm2) was found to be higher in CONT vs. HBOT (206.5+/-41.8 and 124+/-28.2, respectively, p<0.001). Our study suggests that HBOT promotes collagen III formation and decreases the number of newly formed vessels at the early phases of healing.
- MeSH
- diabetická noha metabolismus terapie MeSH
- hojení ran * MeSH
- hyperbarická oxygenace * MeSH
- kolagen typ III metabolismus MeSH
- krysa rodu Rattus MeSH
- náhodné rozdělení MeSH
- potkani Zucker MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Názvy látek
- kolagen typ III MeSH