Nejvíce citovaný článek - PubMed ID 30339402
Changes in Cryopreserved Cell Nuclei Serve as Indicators of Processes during Freezing and Thawing
DNA double-strand breaks (DSBs), marked by ionizing radiation-induced (repair) foci (IRIFs), are the most serious DNA lesions and are dangerous to human health. IRIF quantification based on confocal microscopy represents the most sensitive and gold-standard method in radiation biodosimetry and allows research on DSB induction and repair at the molecular and single-cell levels. In this study, we introduce DeepFoci - a deep learning-based fully automatic method for IRIF counting and morphometric analysis. DeepFoci is designed to work with 3D multichannel data (trained for 53BP1 and γH2AX) and uses U-Net for nucleus segmentation and IRIF detection, together with maximally stable extremal region-based IRIF segmentation. The proposed method was trained and tested on challenging datasets consisting of mixtures of nonirradiated and irradiated cells of different types and IRIF characteristics - permanent cell lines (NHDFs, U-87) and primary cell cultures prepared from tumors and adjacent normal tissues of head and neck cancer patients. The cells were dosed with 0.5-8 Gy γ-rays and fixed at multiple (0-24 h) postirradiation times. Under all circumstances, DeepFoci quantified the number of IRIFs with the highest accuracy among current advanced algorithms. Moreover, while the detection error of DeepFoci remained comparable to the variability between two experienced experts, the software maintained its sensitivity and fidelity across dramatically different IRIF counts per nucleus. In addition, information was extracted on IRIF 3D morphometric features and repair protein colocalization within IRIFs. This approach allowed multiparameter IRIF categorization of single- or multichannel data, thereby refining the analysis of DSB repair processes and classification of patient tumors, with the potential to identify specific cell subclones. The developed software improves IRIF quantification for various practical applications (radiotherapy monitoring, biodosimetry, etc.) and opens the door to advanced DSB focus analysis and, in turn, a better understanding of (radiation-induced) DNA damage and repair.
- Klíčová slova
- 53BP1, P53-binding protein 1, Biodosimetry, CNN, convolutional neural network, Confocal Microscopy, Convolutional Neural Network, DNA Damage and Repair, DSB, DNA double-strand break, Deep Learning, FOV, field of view, GUI, graphical user interface, IRIF, ionizing radiation-induced (repair) foci, Image Analysis, Ionizing Radiation-Induced Foci (IRIFs), MSER, maximally stable extremal region (algorithm), Morphometry, NHDFs, normal human dermal fibroblasts, RAD51, DNA repair protein RAD51 homolog 1, U-87, U-87 glioblastoma cell line, γH2AX, histone H2AX phosphorylated at serine 139,
- Publikační typ
- časopisecké články MeSH
In our work, we developed the synthesis of new polyfunctional pegylated trehalose derivatives and evaluated their cryoprotective effect using flow cytometry. We showed that new compounds (modified trehaloses) bound to appropriate extracellular polymeric cryoprotectants could be helpful as a chemical tool for the evaluation of their potential toxic cell membrane influences. Our aim was to form a chemical tool for the evaluation of cryoprotectant cell membrane influences, which are still not easily predicted during the freezing/thawing process. We combined two basic cryoprotectants: polyethyleneglycols (PEGs) and trehalose in the new chemical compounds-pegylated trehalose hybrids. If PEG and trehalose are chemically bound and trehalose is adsorbed on the cell surface PEGs molecules which are, due to the chemical bonding with trehalose, close to the cell surface, can remove the cell surface hydration layer which destabilizes the cell membrane. This was confirmed by the comparison of new material, PEG, trehalose, and their mixture cryoprotective capabilities.
- Klíčová slova
- click-chemistry, cryoprotection, pegylation,
- MeSH
- buněčná membrána účinky léků metabolismus MeSH
- click chemie MeSH
- dimethylsulfoxid farmakologie MeSH
- kryoprezervace MeSH
- kryoprotektivní látky farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- polyethylenglykoly chemie farmakologie MeSH
- průtoková cytometrie MeSH
- trehalosa analogy a deriváty chemická syntéza chemie farmakologie MeSH
- viabilita buněk účinky léků MeSH
- zmrazování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dimethylsulfoxid MeSH
- kryoprotektivní látky MeSH
- polyethylenglykoly MeSH
- trehalosa MeSH