Most cited article - PubMed ID 30394265
The Role of HNF1B in Tumorigenesis of Solid Tumours: a Review of Current Knowledge
Hepatocyte nuclear factor-1-beta (HNF1B) is a transcription factor and putative biomarker of solid tumours. Recently, we have revealed a variety of HNF1B mRNA alternative splicing variants (ASVs) with unknown, but potentially regulatory, functions. The aim of our work was to quantify the most common variants and compare their expression in tumour and non-tumour tissues of the large intestine, prostate, and kidney. The HNF1B mRNA variants 3p, Δ7, Δ7-8, and Δ8 were expressed across all the analysed tissues in 28.2-33.5%, 1.5-2%, 0.8-1.7%, and 2.3-6.9% of overall HNF1B mRNA expression, respectively, and occurred individually or in combination. The quantitative changes of ASVs between tumour and non-tumour tissue were observed for the large intestine (3p, Δ7-8), prostate (3p), and kidney samples (Δ7). Decreased expression of the overall HNF1B mRNA in the large intestine and prostate cancer samples compared with the corresponding non-tumour samples was observed (p = 0.019 and p = 0.047, respectively). The decreased mRNA expression correlated with decreased protein expression in large intestine carcinomas (p < 0.001). The qualitative and quantitative pattern of the ASVs studied by droplet digital PCR was confirmed by next-generation sequencing, which suggests the significance of the NGS approach for further massive evaluation of the splicing patterns in a variety of genes.
- MeSH
- Alternative Splicing * MeSH
- Hepatocyte Nuclear Factor 1-beta genetics metabolism MeSH
- Humans MeSH
- RNA, Messenger genetics metabolism MeSH
- Biomarkers, Tumor genetics metabolism MeSH
- Neoplasms genetics metabolism MeSH
- Polymerase Chain Reaction MeSH
- Protein Isoforms MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Retrospective Studies MeSH
- RNA, Neoplasm genetics metabolism MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Hepatocyte Nuclear Factor 1-beta MeSH
- HNF1B protein, human MeSH Browser
- RNA, Messenger MeSH
- Biomarkers, Tumor MeSH
- Protein Isoforms MeSH
- RNA, Neoplasm MeSH
High-grade serous ovarian cancer (HGSC) is the most common subtype of ovarian cancer, with a poor prognosis; however, most studies concerning ovarian carcinoma have focused mainly on clear cell carcinoma. The involvement of hepatocyte nuclear factor 1β (HNF1B) in the carcinogenesis of HGSC has not yet been fully elucidated. To the best of our knowledge, the present study is the first to analyse the expression of the possible downstream target of HNF1B, enoyl-CoA (Δ) isomerase 2 (ECI2), in HGSC. The present study performed a comprehensive analysis of HNF1B mRNA and protein expression, and epigenetic and genetic changes, as well as an analysis of ECI2 mRNA and protein expression in 122 cases of HGSC. HNF1B protein expression was detected in 28/122 cases, and was positively associated with lymphovascular invasion (P=0.025). Protein expression of ECI2 was detected in 115/122 cases, but no associations with clinicopathological variables were revealed. Therefore, ECI2 does not seem to function as a suitable prognostic marker for HGSC. In the sample set, a positive correlation between HNF1B and ECI2 protein expression was detected (P=0.005). HNF1B mRNA was also positively correlated with HNF1B protein expression (P=0.001). HNF1B promoter methylation was detected in 26/67 (38.8%) of cases. A novel pathogenic somatic HNF1B mutation was detected in 1/61 (1.6%) of the analysed HGSC cases. No other correlations between the examined SNPs (rs4430796, rs757210 and rs7405776), HNF1B promoter methylation, HNF1B/ECI2 expression or clinicopathological characteristics were found.
- Keywords
- enoyl-CoA (Δ) isomerase 2, hepatocyte nuclear factor 1β, high-grade serous carcinoma, immunohistochemistry, mRNA, methylation, mutation analysis, ovarian carcinoma,
- Publication type
- Journal Article MeSH
Hepatocyte nuclear factor 1 beta (HNF1B) is a transcription factor which plays a crucial role in nephronogenesis, and its germline mutations have been associated with kidney developmental disorders. However, the effects of HNF1B somatic exonic mutations and its role in the pathogenesis of kidney tumours has not yet been elucidated. Depending on the type of the tumour HNF1B may act as a tumour suppressor or oncogene, although the exact mechanism by which HNF1B participates in the process of cancerogenesis is unknown. Using an immunohistochemical approach, and methylation and mutation analysis, we have investigated the expression, epigenetic, and genetic changes of HNF1B in 130 cases of renal tumours (121 renal cell carcinomas, 9 oncocytomas). In the subset of clear cell renal cell carcinoma (ccRCC), decreased HNF1B expression was associated with a higher tumour grade and higher T stage. The mutation analysis revealed no mutations in the analysed samples. Promoter methylation was detected in two ccRCCs and one oncocytoma. The results of our work on a limited sample set suggest that while in papillary renal cell carcinoma HNF1B functions as an oncogene, in ccRCC and chRCC it may act in a tumour suppressive fashion.
- MeSH
- Epigenesis, Genetic genetics MeSH
- Epigenomics methods MeSH
- Hepatocyte Nuclear Factor 1-beta genetics MeSH
- Carcinoma, Renal Cell genetics pathology MeSH
- Kidney pathology MeSH
- Humans MeSH
- DNA Mutational Analysis methods MeSH
- Kidney Neoplasms genetics pathology MeSH
- Promoter Regions, Genetic genetics MeSH
- Germ-Line Mutation genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Hepatocyte Nuclear Factor 1-beta MeSH
- HNF1B protein, human MeSH Browser
Hepatocyte nuclear factor 1 beta (HNF1B) is a tissue specific transcription factor, which seems to play an important role in the carcinogenesis of several tumors. In our study we focused on analyzing HNF1B in prostate carcinoma (PC) and adenomyomatous hyperplasia (AH), as well as its possible relation to the upstream gene EZH2 and downstream gene ECI2. The results of our study showed that on an immunohistochemical level, the expression of HNF1B was low in PC, did not differ between PC and AH, and did not correlate with any clinical outcomes. In PC, mutations of HNF1B gene were rare, but the methylation of its promotor was a common finding and was positively correlated with Gleason score and stage. The relationship between HNF1B and EZH2/ECI2 was equivocal, but EZH2 and ECI2 were positively correlated on both mRNA and protein level. The expression of EZH2 was associated with poor prognosis. ECI2 did not correlate with any clinical outcomes. Our results support the oncosuppressive role of HNF1B in PC, which may be silenced by promotor methylation and other mechanisms, but not by gene mutation. The high expression of EZH2 (especially) and ECI2 in PC seems to be a potential therapeutic target.
- MeSH
- Dodecenoyl-CoA Isomerase genetics metabolism MeSH
- Enhancer of Zeste Homolog 2 Protein genetics metabolism MeSH
- Hepatocyte Nuclear Factor 1-beta genetics metabolism MeSH
- Prostatic Hyperplasia genetics metabolism pathology MeSH
- Immunohistochemistry methods MeSH
- Cohort Studies MeSH
- Humans MeSH
- RNA, Messenger genetics MeSH
- DNA Methylation MeSH
- Mutation MeSH
- Prostatic Neoplasms genetics metabolism pathology MeSH
- Prognosis MeSH
- Promoter Regions, Genetic MeSH
- Prostate pathology MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Aged MeSH
- Neoplasm Grading MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- ECI2 protein, human MeSH Browser
- Dodecenoyl-CoA Isomerase MeSH
- EZH2 protein, human MeSH Browser
- Enhancer of Zeste Homolog 2 Protein MeSH
- Hepatocyte Nuclear Factor 1-beta MeSH
- HNF1B protein, human MeSH Browser
- RNA, Messenger MeSH
Hepatocyte nuclear factor-1-beta (HNF1B) is a transcription factor crucial for the development of several tissues, and a promising biomarker of certain solid tumours. Thus far, two HNF1B alternative splicing variants (ASVs) have been described, however, the complete spectrum, prevalence and role of HNF1B ASVs in tumorigenesis are unclear. Considering the equivocal data about HNF1B ASVs and expression presented in literature, our aim was to characterize the spectrum of HNF1B mRNA splicing variants across different tissues. Here, we characterize HNF1B ASVs with high sensitivity in carcinomas of the uterine corpus, large intestine, kidney, pancreas, and prostate, with selected paired healthy tissues, using the previously described multiplex PCR and NGS approach. We identified 45 ASVs, of which 43 were novel. The spectrum and relative quantity of expressed ASVs mRNA differed among the analysed tissue types. Two known (3p, Δ7_8) and two novel (Δ7, Δ8) ASVs with unknown biological functions were detected in all the analysed tissues in a higher proportion. Our study reveals the wide spectrum of HNF1B ASVs in selected tissues. Characterization of the HNF1B ASVs is an important prerequisite for further expression studies to delineate the HNF1B splicing pattern, potential ASVs functional impact, and eventual refinement of HNF1B's biomarker role.
- MeSH
- Alternative Splicing genetics MeSH
- Biomarkers metabolism MeSH
- Hepatocyte Nuclear Factor 1-beta genetics metabolism MeSH
- Kidney metabolism pathology MeSH
- Humans MeSH
- RNA, Messenger genetics metabolism MeSH
- Multiplex Polymerase Chain Reaction MeSH
- Pancreas metabolism pathology MeSH
- RNA Splicing genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- Hepatocyte Nuclear Factor 1-beta MeSH
- HNF1B protein, human MeSH Browser
- RNA, Messenger MeSH