Nejvíce citovaný článek - PubMed ID 30463696
The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts
Styrene-maleic acid (SMA) and similar amphiphilic copolymers are known to cut biological membranes into lipid nanoparticles/nanodiscs containing membrane proteins apparently in their relatively native membrane lipid environment. Our previous work demonstrated that membrane raft microdomains resist such disintegration by SMA. The use of SMA in studying membrane proteins is limited by its heterogeneity and the inability to prepare defined derivatives. In the present paper, we demonstrate that some amphiphilic peptides structurally mimicking SMA also similarly disintegrate cell membranes. In contrast to the previously used copolymers, the simple peptides are structurally homogeneous. We found that their membrane-disintegrating activity increases with their length (reaching optimum at 24 amino acids) and requires a basic primary structure, that is, (XXD)n, where X represents a hydrophobic amino acid (optimally phenylalanine), D aspartic acid, and n is the number of repeats of these triplets. These peptides may provide opportunities for various well-defined potentially useful modifications in the study of membrane protein biochemistry. Our present results confirm a specific character of membrane raft microdomains.
- Klíčová slova
- leukocyte, lipid raft, lymphocyte, membrane, membrane proteins, peptides,
- MeSH
- buněčná membrána metabolismus chemie MeSH
- buněčné linie MeSH
- lidé MeSH
- maleáty chemie MeSH
- membránové mikrodomény metabolismus chemie MeSH
- membránové proteiny * chemie metabolismus MeSH
- peptidy * chemie MeSH
- polystyreny chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Amphiphilic polymers are increasingly applied in the detergent-free isolation and functional studies of membrane proteins. However, the carboxylate group present in the structure of many popular variants, such as styrene-maleic acid (SMA) copolymers, brings limitations in terms of polymer sensitivity to precipitation at acidic pH or in the presence of divalent metal cations. Herein, we addressed this problem by replacing carboxylate with the more acidic sulfonate groups. To this end, we synthesized a library of amphiphilic poly[styrene-co-(sodium 4-styrene sulfonate)] copolymers (termed SSS), differing in their molecular weight and overall polarity. Using model cell membranes (Jurkat), we identified two copolymer compositions (SSS-L30 and SSS-L36) that solubilized membranes to an extent similar to SMA. Interestingly, the density gradient ultracentrifugation/SDS-PAGE/Western blotting analysis of cell lysates revealed a distribution of studied membrane proteins in the gradient fractions that was different than for SMA-solubilized membranes. Importantly, unlike SMA, the SSS copolymers remained soluble at low pH and in the presence of Mg2+ ions. Additionally, the solubilization of DMPC liposomes by the lead materials was studied by turbidimetry, DLS, SEC, and high-resolution NMR, revealing, for SSS-L36, the formation of stable particles (nanodiscs), facilitated by the direct hydrophobic interaction of the copolymer phenyls with lipid acyl chains.
- Klíčová slova
- amphiphilic copolymer, cell membrane, membrane protein, solubilization, sulfonated polystyrene,
- Publikační typ
- časopisecké články MeSH