Nejvíce citovaný článek - PubMed ID 30487730
Molecular and morphological diversity of Zygnema and Zygnemopsis (Zygnematophyceae, Streptophyta) from Svalbard (High Arctic)
Filamentous green algae of the genus Zygnema are an essential part of hydro-terrestrial ecosystems. Despite several studies on their resistance to natural stresses, little is known about the composition of their assemblages and the changes they undergo over time. Two sites at altitudes above 2200 m a.s.l. in the Austrian Alps were selected for a 2-year observation period and sampled five times. Molecular phylogenetic analysis of the 152 isolated strains of Zygnema sp. was performed based on the rbcL and trnG sequences. Seven genotypes were found at these sites during the samplings, but their proportion varied throughout the seasons. The site with a more stable water regime also had a more stable representation of genotypes, in contrast to the site with fluctuating water availability. The mats formed resistant pre-akinetes at the end of the season with reduced photosynthetic activity. Contrary to expectations, the mats were not exposed to extremely cold temperatures in winter due to snow cover. Some genotypes have been previously observed at this site, indicating that the population composition is stable. This work highlights the importance of resistant pre-akinetes in surviving winter conditions, the ability of algae to re-establish mats, and the need to address the hidden diversity of the genus Zygnema.
- Klíčová slova
- Chlorophyll fluorescence, Cryptic diversity, Freezing, Hidden diversity, Overwintering,
- MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- roční období MeSH
- Streptophyta * MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Rakousko MeSH
- Názvy látek
- voda MeSH
The streptophyte green algal class Zygnematophyceae is the immediate sister lineage to land plants. Their special form of sexual reproduction via conjugation might have played a key role during terrestrialization. Thus, studying Zygnematophyceae and conjugation is crucial for understanding the conquest of land. Moreover, sexual reproduction features are important for species determination. We present a phylogenetic analysis of a field-sampled Zygnema strain and analyze its conjugation process and zygospore morphology, both at the micro- and nanoscale, including 3D-reconstructions of the zygospore architecture. Vegetative filament size (26.18 ± 1.07 μm) and reproductive features allowed morphological determination of Zygnema vaginatum, which was combined with molecular analyses based on rbcL sequencing. Transmission electron microscopy (TEM) depicted a thin cell wall in young zygospores, while mature cells exhibited a tripartite wall, including a massive and sculptured mesospore. During development, cytological reorganizations were visualized by focused ion beam scanning electron microscopy (FIB-SEM). Pyrenoids were reorganized, and the gyroid cubic central thylakoid membranes, as well as the surrounding starch granules, degraded (starch granule volume: 3.58 ± 2.35 μm3 in young cells; 0.68 ± 0.74 μm3 at an intermediate stage of zygospore maturation). Additionally, lipid droplets (LDs) changed drastically in shape and abundance during zygospore maturation (LD/cell volume: 11.77% in young cells; 8.79% in intermediate cells, 19.45% in old cells). In summary, we provide the first TEM images and 3D-reconstructions of Zygnema zygospores, giving insights into the physiological processes involved in their maturation. These observations help to understand mechanisms that facilitated the transition from water to land in Zygnematophyceae.
- MeSH
- buněčná stěna MeSH
- ekosystém MeSH
- fylogeneze MeSH
- parožnatky * MeSH
- škrob MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- škrob MeSH
In streptophytic green algae in the genus Zygnema, pre-akinete formation is considered a key survival strategy under extreme environmental conditions in alpine and polar regions. The transition from young, dividing cells to pre-akinetes is associated with morphological changes and the accumulation of storage products. Understanding the underlying metabolic changes could provide insights into survival strategies in polar habitats. Here, GC-MS-based metabolite profiling was used to study the metabolic signature associated with pre-akinete formation in Zygnema sp. from polar regions under laboratory conditions, induced by water and nutrient depletion, or collected in the field. Light microscopy and TEM revealed drastic changes in chloroplast morphology and ultrastructure, degradation of starch grains, and accumulation of lipid bodies in pre-akinetes. Accordingly, the metabolite profiles upon pre-akinete formation reflected a gradual shift in metabolic activity. Compared with young cells, pre-akinetes showed an overall reduction in primary metabolites such as amino acids and intermediates of the tricarboxylic acid (TCA) cycle, consistent with a lower metabolic turnover, while they accumulated lipids and oligosaccharides. Overall, the transition to the pre-akinete stage involves re-allocation of photosynthetically fixed energy into storage instead of growth, supporting survival of extreme environmental conditions.
- Klíčová slova
- Zygnema, Abiotic stress, green algae, metabolomics, pre-akinete, streptophyte,
- MeSH
- Chlorophyta * MeSH
- ekosystém MeSH
- lipidová tělíska MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Within streptophyte green algae Zygnematophyceae are the sister group to the land plants that inherited several traits conferring stress protection. Zygnema sp., a mat-forming alga thriving in extreme habitats, was collected from a field site in Svalbard, where the bottom layers are protected by the top layers. The two layers were investigated by a metatranscriptomic approach and GC-MS-based metabolite profiling. In the top layer, 6569 genes were significantly upregulated and 149 were downregulated. Upregulated genes coded for components of the photosynthetic apparatus, chlorophyll synthesis, early light-inducible proteins, cell wall and carbohydrate metabolism, including starch-degrading enzymes. An increase in maltose in the top layer and degraded starch grains at the ultrastructural levels corroborated these findings. Genes involved in amino acid, redox metabolism and DNA repair were upregulated. A total of 29 differentially accumulated metabolites (out of 173 identified ones) confirmed higher metabolic turnover in the top layer. For several of these metabolites, differential accumulation matched the transcriptional changes of enzymes involved in associated pathways. In summary, the findings support the hypothesis that in a Zygnema mat the top layer shields the bottom layers from abiotic stress factors such as excessive irradiation.
- MeSH
- Chlorophyta genetika metabolismus MeSH
- ekosystém MeSH
- fotosyntéza genetika MeSH
- fyziologický stres MeSH
- metabolom MeSH
- Streptophyta genetika metabolismus MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Arktida MeSH
- Svalbard MeSH
Green algae of the genus Zygnema form extensive mats and produce large amounts of biomass in shallow freshwater habitats. Environmental stresses including freezing may perturb these mats, which usually have only annual character. To estimate the limits of survival at subzero temperatures, freezing resistance of young Zygnema sp. (strain MP2011Skan) cells and pre-akinetes was investigated. Young, 2-week-old cultures were exposed to temperatures of 0 to - 14 °C at 2-K steps, whereas 8-month-old cultures were frozen from - 10 to - 70 °C at 10-K intervals. Cell viability after freezing was determined by 0.1% auramine O vital fluorescence staining and measurements of the effective quantum yield of photosystem II (ФPSII). At - 8 °C, the young vegetative cells were unable to recover from severe frost damage. But temperatures even slightly below zero (- 2 °C) negatively affected the cells' physiology. Single pre-akinetes could survive even at - 70 °C, but their LT50 value was - 26.2 °C. Severe freezing cytorrhysis was observed via cryo-microscopy at - 10 °C, a temperature found to be lethal for young cells. The ultrastructure of young cells appeared unchanged at - 2 °C, but severe damage to biomembranes and formation of small foamy vacuoles was observed at - 10 °C. Pre-akinetes did not show ultrastructural changes at - 20 °C; however, vacuolization increased, and gas bubbles appeared at - 70 °C. Our results demonstrate that the formation of pre-akinetes increases freezing resistance. This adaptation is crucial for surviving the harsh temperature conditions prevailing in the High Arctic in winter and a key feature in seasonal dynamics of Zygnema sp.
- Klíčová slova
- Auramine O, Chlorophyll fluorescence, Freezing, Ice, Live cell staining, Ultrastructure,
- MeSH
- chlorofyl chemie MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Arktida MeSH
- Názvy látek
- chlorofyl MeSH