Nejvíce citovaný článek - PubMed ID 30580247
Impairment of brain functions in Parkinson's disease reflected by alterations in neural connectivity in EEG studies: A viewpoint
The aim of this work was to study the effect of deep brain stimulation of the subthalamic nucleus (STN-DBS) on the subnetwork of subcortical and cortical motor regions and on the whole brain connectivity using the functional connectivity analysis in Parkinson's disease (PD). The high-density source space EEG was acquired and analyzed in 43 PD subjects in DBS on and DBS off stimulation states (off medication) during a cognitive-motor task. Increased high gamma band (50-100 Hz) connectivity within subcortical regions and between subcortical and cortical motor regions was significantly associated with the Movement Disorders Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III improvement after DBS. Whole brain neural correlates of cognitive performance were also detected in the high gamma (50-100 Hz) band. A whole brain multifrequency connectivity profile was found to classify optimal and suboptimal responders to DBS with a positive predictive value of 0.77, negative predictive value of 0.55, specificity of 0.73, and sensitivity of 0.60. Specific connectivity patterns related to PD, motor symptoms improvement after DBS, and therapy responsiveness predictive connectivity profiles were uncovered.
- Klíčová slova
- Connectivity patterns, Deep brain stimulation, EEG, Functional connectivity, Parkinson’s disease, Subthalamic nucleus,
- MeSH
- elektroencefalografie metody MeSH
- hluboká mozková stimulace * metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- mozek patofyziologie diagnostické zobrazování MeSH
- nucleus subthalamicus * patofyziologie MeSH
- Parkinsonova nemoc * terapie patofyziologie MeSH
- senioři MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Mechanisms of deep brain stimulation (DBS) on cortical networks were explored mainly by fMRI. Advanced analysis of high-density EEG is a source of additional information and may provide clinically useful biomarkers. The presented study evaluates EEG microstates in Parkinson's disease and the effect of DBS of the subthalamic nucleus (STN). The association between revealed spatiotemporal dynamics of brain networks and changes in oscillatory activity and clinical examination were assessed. Thirty-seven patients with Parkinson's disease treated by STN-DBS underwent two sessions (OFF and ON stimulation conditions) of resting-state EEG. EEG microstates were analyzed in patient recordings and in a matched healthy control dataset. Microstate parameters were then compared across groups and were correlated with clinical and neuropsychological scores. Of the five revealed microstates, two differed between Parkinson's disease patients and healthy controls. Another microstate differed between ON and OFF stimulation conditions in the patient group and restored parameters in the ON stimulation state toward to healthy values. The mean beta power of that microstate was the highest in patients during the OFF stimulation condition and the lowest in healthy controls; sources were localized mainly in the supplementary motor area. Changes in microstate parameters correlated with UPDRS and neuropsychological scores. Disease specific alterations in the spatiotemporal dynamics of large-scale brain networks can be described by EEG microstates. The approach can reveal changes reflecting the effect of DBS on PD motor symptoms as well as changes probably related to non-motor symptoms not influenced by DBS.
- Publikační typ
- časopisecké články MeSH
Several neurological diseases are accompanied by rhythmic oscillatory dysfunctions in various frequency ranges and disturbed cross-frequency relationships on regional, interregional, and whole brain levels. Knowledge of these disease-specific oscillopathies is important mainly in the context of deep brain stimulation (DBS) therapy. Electrophysiological biomarkers have been used as input signals for adaptive DBS (aDBS) as well as preoperative outcome predictors. As movement disorders, particularly Parkinson's disease (PD), are among the most frequent DBS indications, the current research of DBS is the most advanced in the movement disorders field. We reviewed the literature published mainly between 2010 and 2020 to identify the most important findings concerning the current evolution of electrophysiological biomarkers in DBS and to address future challenges for prospective research.
- Klíčová slova
- Deep brain stimulation, EEG biomarkers, Local field potentials, Movement disorders,
- MeSH
- biologické markery MeSH
- hluboká mozková stimulace * MeSH
- lidé MeSH
- mozek MeSH
- Parkinsonova nemoc * terapie MeSH
- prospektivní studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
It has been suggested that slow oscillations in the subthalamic nucleus (STN) reflect top-down inputs from the medial prefrontal cortex, thus implementing behavior control. It is unclear, however, whether the STN oscillations are related to cortical activity in a bottom-up manner. To assess resting-state subcortico-cortical interactions, we recorded simultaneous scalp electroencephalographic activity and local field potentials in the STN (LFP-STN) in 11 patients with Parkinson's disease implanted with deep brain stimulation electrodes in the on-medication state during rest. We assessed the cross-structural phase-amplitude coupling (PAC) between the STN and cortical activity within a wide frequency range of 1 to 100 Hz. The PAC was dominant between the δ/θ STN phase and β/γ cortical amplitude in most investigated scalp regions and between the δ cortical phase and θ/α STN amplitude in the frontal and temporal regions. The cross-frequency linkage between the slow oscillations of the LFP-STN activity and the amplitude of the scalp-recorded cortical activity at rest was demonstrated, and similar involvement of the left and right STNs in the coupling was observed. Our results suggest that the STN plays a role in both bottom-up and top-down processes within the subcortico-cortical circuitries of the human brain during the resting state. A relative left-right symmetry in the STN-cortex functional linkage was suggested. Practical treatment studies would be necessary to assess whether unilateral stimulation of the STN might be sufficient for treatment of Parkinson's disease.
- Klíčová slova
- Cross-structural coupling, Phase-amplitude coupling, Simultaneous intracranial and scalp EEG, Subcortico-cortical interactions, Subthalamic nucleus,
- MeSH
- elektroencefalografie MeSH
- hluboká mozková stimulace * MeSH
- lidé MeSH
- nucleus subthalamicus * MeSH
- Parkinsonova nemoc * terapie MeSH
- skalp MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH