Most cited article - PubMed ID 30582486
Mitochondrial Dysfunction in Blood Platelets of Patients with Manic Episode of Bipolar Disorder
Mitochondrial dysfunction is an important cellular hallmark of aging and neurodegeneration. Platelets are a useful model to study the systemic manifestations of mitochondrial dysfunction. To evaluate the age dependence of mitochondrial parameters, citrate synthase activity, respiratory chain complex activity, and oxygen consumption kinetics were assessed. The effect of cognitive impairment was examined by comparing the age dependence of mitochondrial parameters in healthy individuals and those with neuropsychiatric disease. The study found a significant negative slope of age-dependence for both the activity of individual mitochondrial enzymes (citrate synthase and complex II) and parameters of mitochondrial respiration in intact platelets (routine respiration, maximum capacity of electron transport system, and respiratory rate after complex I inhibition). However, there was no significant difference in the age-related changes of mitochondrial parameters between individuals with and without cognitive impairment. These findings highlight the potential of measuring mitochondrial respiration in intact platelets as a means to assess age-related mitochondrial dysfunction. The results indicate that drugs and interventions targeting mitochondrial respiration may have the potential to slow down or eliminate certain aging and neurodegenerative processes. Mitochondrial respiration in platelets holds promise as a biomarker of aging, irrespective of the degree of cognitive impairment.
- Keywords
- aging, cognitive decline, mitochondria, mitochondrial respiration, neurodegenerative disease, neuroinflammation, neuroplasticity, oxidative stress, platelet, respiratory chain complex,
- Publication type
- Journal Article MeSH
Platelet mitochondria can be used in the study of mitochondrial dysfunction in various complex diseases and can help in finding biological markers for diagnosing the disease, monitoring its course and the effects of treatment. The aim of this chapter was to describe in detail the method of measuring mitochondrial respiration in platelets using high-resolution respirometry. The described method was successfully used for the study of mitochondrial dysfunction in neuropsychiatric diseases.
- Keywords
- High-resolution respirometry, Human platelets, Mitochondria, Neuropsychiatric disease,
- MeSH
- Cell Respiration MeSH
- Humans MeSH
- Mitochondria metabolism MeSH
- Polarography instrumentation methods MeSH
- Blood Platelets metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH