Nejvíce citovaný článek - PubMed ID 30591435
Evolution of Cancer Progression in the Context of Darwinism
Wound healing represents a complex and evolutionarily conserved process across vertebrates, encompassing a series of life-rescuing events. The healing process runs in three main phases: inflammation, proliferation, and maturation/remodelling. While acute inflammation is indispensable for cleansing the wound, removing infection, and eliminating dead tissue characterised by the prevalence of neutrophils, the proliferation phase is characterised by transition into the inflammatory cell profile, shifting towards the prevalence of macrophages. The proliferation phase involves development of granulation tissue, comprising fibroblasts, activated myofibroblasts, and inflammatory and endothelial cells. Communication among these cellular components occurs through intercellular contacts, extracellular matrix secretion, as well as paracrine production of bioactive factors and proteolytic enzymes. The proliferation phase of healing is intricately regulated by inflammation, particularly interleukin-6. Prolonged inflammation results in dysregulations during the granulation tissue formation and may lead to the development of chronic wounds or hypertrophic/keloid scars. Notably, pathological processes such as autoimmune chronic inflammation, organ fibrosis, the tumour microenvironment, and impaired repair following viral infections notably share morphological and functional similarities with granulation tissue. Consequently, wound healing emerges as a prototype for understanding these diverse pathological processes. The prospect of gaining a comprehensive understanding of wound healing holds the potential to furnish fundamental insights into modulation of the intricate dialogue between cancer cells and non-cancer cells within the cancer ecosystem. This knowledge may pave the way for innovative approaches to cancer diagnostics, disease monitoring, and anticancer therapy.
- Klíčová slova
- IL-6, cancer-associated fibroblasts, granulation tissue, myofibroblasts, wound healing,
- MeSH
- autoimunita * MeSH
- hojení ran * imunologie MeSH
- interleukin-6 * metabolismus imunologie MeSH
- lidé MeSH
- nádorové mikroprostředí * imunologie MeSH
- nádory * imunologie metabolismus patologie MeSH
- stárnutí * imunologie MeSH
- zánět * imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- interleukin-6 * MeSH
Cancer-associated fibroblasts (CAFs) are an essential component of the tumour microenvironment. They represent a heterogeneous group of cells that are under the control of cancer cells and can reversely influence the cancer cell population. They affect the cancer cell differentiation status, and the migration and formation of metastases. This is achieved through the production of the extracellular matrix and numerous bioactive factors. IL-6 seems to play the central role in the communication of noncancerous and cancer cells in the tumour. This review outlines the role of exosomes in cancer cells and cancer-associated fibroblasts. Available data on the exosomal cargo, which can significantly intensify interactions in the tumour, are summarised. The role of exosomes as mediators of the dialogue between cancer cells and cancer-associated fibroblasts is discussed together with their therapeutic relevance. The functional unity of the paracrine- and exosome-mediated communication of cancer cells with the tumour microenvironment represented by CAFs is worthy of attention.
- Klíčová slova
- IL-6, cancer ecosystem, cancer microenvironment, cancer-associated fibroblast, exosome,
- MeSH
- exozómy metabolismus MeSH
- fibroblasty asociované s nádorem metabolismus MeSH
- interleukin-6 metabolismus MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- nádory metabolismus MeSH
- parakrinní signalizace MeSH
- pohyb buněk MeSH
- proliferace buněk MeSH
- regulace genové exprese u nádorů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- IL6 protein, human MeSH Prohlížeč
- interleukin-6 MeSH