Most cited article - PubMed ID 30795747
Protura are unique: first evidence of specialized feeding on ectomycorrhizal fungi in soil invertebrates
Disturbances are intrinsic drivers of structure and function in ecosystems, hence predicting their effects in forest ecosystems is essential for forest conservation and/or management practices. Yet, knowledge regarding belowground impacts of disturbance events still remains little understood and can greatly vary by taxonomic and functional identity, disturbance type and local environmental conditions. To address this gap in knowledge, we conducted a survey of soil-dwelling Protura, across forests subjected to different disturbance regimes (i.e. windstorms, insect pest outbreaks and clear-cut logging). We expected that the soil proturan assemblages would differ among disturbance regimes. We also hypothesized that these differences would be driven primarily by variation in soil physicochemical properties thus the impacts of forest disturbances would be indirect and related to changes in food resources. To verify that sampling included two geographically distant subalpine glacial lake catchments that differed in underlying geology, each having four different types of forest disturbance, i.e. control, bark beetle outbreak (BB), windthrow + BB (wind + BB) and clear-cut. As expected, forest disturbance had negative effects on proturan diversity and abundance, with multiple disturbances having the greatest impacts. However, differences in edaphic factors constituted a stronger driver of variability in distribution and abundance of proturans assemblages. These results imply that soil biogeochemistry and resource availability can have much stronger effects on proturan assemblages than forest disturbances.
- MeSH
- Biodiversity MeSH
- Coleoptera growth & development MeSH
- Arthropods growth & development MeSH
- Ecosystem MeSH
- Lakes MeSH
- Forests MeSH
- Soil MeSH
- Trees physiology MeSH
- Conservation of Natural Resources MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Soil MeSH
Protura are widespread, but their presence in the Arctic was first noted only ca. 70 years ago and is still little acknowledged. This work compiles taxonomic information on proturans in the Arctic regions and adds unpublished data from Northern Siberia. Currently, this fauna is represented by 23 species in two orders and 14 genera. The large cosmopolitan genus Eosentomon is represented by only four species, whereas Acerentomidae is much more diverse, with 19 species in 13 genera (eight Nipponentominae, five Acerentominae). Most of the Arctic species possess a larger number of setae than species living in temperate regions. Based on several unique characters, a new genus, Mastodonentomon, is erected for Nipponentomon macleani, and the species is re-described with the original description supplemented with new characters, including head chaetotaxy, seta length, and porotaxy. Proturan occurrence in the Arctic is limited to Beringia, but the majority of species have restricted distributions and none have been found in both the American Arctic and Siberia. This implies relict origins and high levels of proturan endemism in the Arctic. This emerging view on biogeographical history is, however, hampered by the limited extent of available data, which highlights the need for considerably greater survey efforts. A key to Arctic proturans is provided to facilitate further studies.
- Keywords
- Alaska, Beringia, Northern Canada, Siberia, arthropods, biogeography, chaetotaxy, distribution, porotaxy, proturans,
- Publication type
- Journal Article MeSH