Most cited article - PubMed ID 30796952
A novel Kunitz protein with proposed dual function from Eudiplozoon nipponicum (Monogenea) impairs haemostasis and action of complement in vitro
BACKGROUND: Venom allergen-like proteins (VALs) are abundant in the excretory-secretory products (ESPs) of numerous parasitic helminths and have been extensively studied for over 30 years because of their potential to interact with host systems. Despite substantial research, however, the precise functions of these proteins remain largely unresolved. Schistosomes, parasites of the circulatory system, are no exception, with 29 SmVAL genes identified in the genome of Schistosoma mansoni to date. The eggs of these parasites, as primary pathogenic agents, interact directly with host tissues and release excretory-secretory products that aid their egress from the host. Although SmVALs have been detected in the egg secretome in the past, direct evidence of their secretion and functional interaction with host molecules has never been demonstrated. These findings fuel the ongoing debate as to whether egg-expressed SmVALs interact with the mammalian host or are rather miracidial proteins synthesized within the egg during larval development. RESULTS: Based on complete revision of the SmVAL family and an associated robust transcriptomic meta-analysis of gene expression across the life cycle, we show that many of SmVAL genes, including 6 newly identified genes, are expressed in the infective larvae-producing stages (eggs and sporocysts). Following localization of two "egg-specific" SmVAL9 and SmVAL29 did not prove active secretion of these molecules into surrounding tissues but were aligned with miracidial structures interfacing with the molluscan host, specifically the larval surface and penetration glands. Finally, we show the complete lack of interactions between candidate SmVAL proteins and an array of 755 human cell receptors via a state-of-the-art SAVEXIS screen. CONCLUSIONS: Overall, we conclude that these "egg" SmVALs are not involved in direct host‒parasite interactions in the mammalian host and are rather proteins employed during intermediate host invasion. Our study revisits and updates the SmVAL gene family, highlighting the limitations of in silico protein function predictions while emphasizing the need for up-to-date datasets and tools together with experimental validation in host-parasite interactions. By uncovering the diversity, expression patterns, and interaction dynamics of SmVALs, we open new avenues for understanding host manipulation and reevaluating orthologous proteins in other helminths.
- Keywords
- CAP, Egg, Miracidium, SAVEXIS, SCP, Schistosomiasis, Transcriptome, Venom allergen-like,
- MeSH
- Allergens * genetics metabolism MeSH
- Host-Parasite Interactions * genetics MeSH
- Humans MeSH
- Ovum * metabolism MeSH
- Helminth Proteins * genetics metabolism MeSH
- Schistosoma mansoni * genetics metabolism MeSH
- Gene Expression Profiling MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Allergens * MeSH
- Helminth Proteins * MeSH
BACKGROUND: Helminth extracellular vesicles (EVs) are known to have a three-way communication function among parasitic helminths, their host and the host-associated microbiota. They are considered biological containers that may carry virulence factors, being therefore appealing as therapeutic and prophylactic target candidates. This study aims to describe and characterise EVs secreted by Sparicotyle chrysophrii (Polyopisthocotyla: Microcotylidae), a blood-feeding gill parasite of gilthead seabream (Sparus aurata), causing significant economic losses in Mediterranean aquaculture. METHODS: To identify proteins involved in extracellular vesicle biogenesis, genomic datasets from S. chrysophrii were mined in silico using known protein sequences from Clonorchis spp., Echinococcus spp., Fasciola spp., Fasciolopsis spp., Opisthorchis spp., Paragonimus spp. and Schistosoma spp. The location and ultrastructure of EVs were visualised by transmission electron microscopy after fixing adult S. chrysophrii specimens by high-pressure freezing and freeze substitution. EVs were isolated and purified from adult S. chrysophrii (n = 200) using a newly developed ultracentrifugation-size-exclusion chromatography protocol for Polyopisthocotyla, and EVs were characterised via nanoparticle tracking analysis and tandem mass spectrometry. RESULTS: Fifty-nine proteins involved in EV biogenesis were identified in S. chrysophrii, and EVs compatible with ectosomes were observed in the syncytial layer of the haptoral region lining the clamps. The isolated and purified nanoparticles had a mean size of 251.8 nm and yielded 1.71 × 108 particles · mL-1. The protein composition analysis identified proteins related to peptide hydrolases, GTPases, EF-hand domain proteins, aerobic energy metabolism, anticoagulant/lipid-binding, haem detoxification, iron transport, EV biogenesis-related, vesicle-trafficking and other cytoskeletal-related proteins. Several identified proteins, such as leucyl and alanyl aminopeptidases, calpain, ferritin, dynein light chain, 14-3-3, heat shock protein 70, annexin, tubulin, glutathione S-transferase, superoxide dismutase, enolase and fructose-bisphosphate aldolase, have already been proposed as target candidates for therapeutic or prophylactic purposes. CONCLUSIONS: We have unambiguously demonstrated for the first time to our knowledge the secretion of EVs by an ectoparasitic flatworm, inferring their biogenesis machinery at a genomic and transcriptomic level, and by identifying their location and protein composition. The identification of multiple therapeutic targets among EVs' protein repertoire provides opportunities for target-based drug discovery and vaccine development for the first time in Polyopisthocotyla (sensu Monogenea), and in a fish-ectoparasite model.
- Keywords
- Drug target candidates, Ectosomes, Electron microscopy, Exosomes, Monogenea, Peptidases, Polyopisthocotyla, Prophylactic target candidates,
- MeSH
- Extracellular Vesicles * MeSH
- Sea Bream * parasitology MeSH
- Platyhelminths * MeSH
- Proteomics MeSH
- Trematoda * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Hybrid generations usually face either a heterosis advantage or a breakdown, that can be expressed by the level of parasite infection in hybrid hosts. Hybrids are less infected by parasites than parental species (especially F1 generations) or more infected than parental species (especially post-F1 generations). We performed the experiment with blood-feeding gill parasite Paradiplozoon homoion (Monogenea) infecting leuciscid species, Abramis brama and Rutilus rutilus, their F1 generation and two backcross generations. Backcross generations tended to be more parasitized than parental lines and the F1 generation. The number of differentially expressed genes (DEGs) was lower in F1 hybrids and higher in backcross hybrids when compared to each of the parental lines. The main groups of DEGs were shared among lines; however, A. brama and R. rutilus differed in some of the top gene ontology (GO) terms. DEG analyses revealed the role of heme binding and erythrocyte differentiation after infection by blood-feeding P. homoion. Two backcross generations shared some of the top GO terms, representing mostly downregulated genes associated with P. homoion infection. KEGG analysis revealed the importance of disease-associated pathways; the majority of them were shared by two backcross generations. Our study revealed the most pronounced DEGs associated with blood-feeding monogeneans in backcross hybrids, potentially (but not exclusively) explainable by hybrid breakdown. The lower DEGs reported in F1 hybrids being less parasitized than backcross hybrids is in line with the hybrid advantage.
- Keywords
- Monogenea, Paradiplozoon homoion, RNA seq, differential gene expression, freshwater fish, hybrid breakdown, hybrid heterosis, hybridization,
- Publication type
- Journal Article MeSH
BACKGROUND: Monogenea (Platyhelminthes, Neodermata) are the most species-rich class within the Neodermata superclass of primarily fish parasites. Despite their economic and ecological importance, monogenean research tends to focus on their morphological, phylogenetic, and population characteristics, while comprehensive omics analyses aimed at describing functionally important molecules are few and far between. We present a molecular characterisation of monogenean representative Eudiplozoon nipponicum, an obligate haematophagous parasite infecting the gills of the common carp. We report its nuclear and mitochondrial genomes, present a functional annotation of protein molecules relevant to the molecular and biochemical aspect of physiological processes involved in interactions with the fish hosts, and re-examinate the taxonomic position of Eudiplozoon species within the Diplozoidae family. RESULTS: We have generated 50.81 Gbp of raw sequencing data (Illumina and Oxford Nanopore reads), bioinformatically processed, and de novo assembled them into a genome draft 0.94 Gbp long, consisting of 21,044 contigs (N50 = 87 kbp). The final assembly represents 57% of the estimated total genome size (~ 1.64 Gbp), whereby repetitive and low-complexity regions account for ~ 64% of the assembled length. In total, 36,626 predicted genes encode 33,031 proteins and homology-based annotation of protein-coding genes (PCGs) and proteins characterises 14,785 (44.76%) molecules. We have detected significant representation of functional proteins and known molecular functions. The numbers of peptidases and inhibitors (579 proteins), characterised GO terms (16,016 unique assigned GO terms), and identified KEGG Orthology (4,315 proteins) acting in 378 KEGG pathways demonstrate the variety of mechanisms by which the parasite interacts with hosts on a macromolecular level (immunomodulation, feeding, and development). Comparison between the newly assembled E. nipponicum mitochondrial genome (length of 17,038 bp) and other diplozoid monogeneans confirms the existence of two distinct Eudiplozoon species infecting different fish hosts: Cyprinus carpio and Carassius spp. CONCLUSIONS: Although the amount of sequencing data and characterised molecules of monogenean parasites has recently increased, a better insight into their molecular biology is needed. The E. nipponicum nuclear genome presented here, currently the largest described genome of any monogenean parasite, represents a milestone in the study of monogeneans and their molecules but further omics research is needed to understand these parasites' biological nature.
- Keywords
- Annotation, Assembly, Genome, Helminths, Host–parasite interaction, Illumina, Mitochondrial genome, Monogenea, Nanopore, Sequencing,
- MeSH
- Phylogeny MeSH
- Genomics MeSH
- Carps * genetics MeSH
- Parasites * MeSH
- Trematoda * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Ectoparasites from the family Diplozoidae (Platyhelminthes, Monogenea) belong to obligate haematophagous helminths of cyprinid fish. Current knowledge of these worms is for the most part limited to their morphological, phylogenetic, and population features. Information concerning the biochemical and molecular nature of physiological processes involved in host-parasite interaction, such as evasion of the immune system and its regulation, digestion of macromolecules, suppression of blood coagulation and inflammation, and effect on host tissue and physiology, is lacking. In this study, we report for the first time a comprehensive transcriptomic/secretome description of expressed genes and proteins secreted by the adult stage of Eudiplozoon nipponicum (Goto, 1891) Khotenovsky, 1985, an obligate sanguivorous monogenean which parasitises the gills of the common carp (Cyprinus carpio). RESULTS: RNA-seq raw reads (324,941 Roche 454 and 149,697,864 Illumina) were generated, de novo assembled, and filtered into 37,062 protein-coding transcripts. For 19,644 (53.0%) of them, we determined their sequential homologues. In silico functional analysis of E. nipponicum RNA-seq data revealed numerous transcripts, pathways, and GO terms responsible for immunomodulation (inhibitors of proteolytic enzymes, CD59-like proteins, fatty acid binding proteins), feeding (proteolytic enzymes cathepsins B, D, L1, and L3), and development (fructose 1,6-bisphosphatase, ferritin, and annexin). LC-MS/MS spectrometry analysis identified 721 proteins secreted by E. nipponicum with predominantly immunomodulatory and anti-inflammatory functions (peptidyl-prolyl cis-trans isomerase, homolog to SmKK7, tetraspanin) and ability to digest host macromolecules (cathepsins B, D, L1). CONCLUSIONS: In this study, we integrated two high-throughput sequencing techniques, mass spectrometry analysis, and comprehensive bioinformatics approach in order to arrive at the first comprehensive description of monogenean transcriptome and secretome. Exploration of E. nipponicum transcriptome-related nucleotide sequences and translated and secreted proteins offer a better understanding of molecular biology and biochemistry of these, often neglected, organisms. It enabled us to report the essential physiological pathways and protein molecules involved in their interactions with the fish hosts.
- Keywords
- Annotation, Assembly, Eudiplozoon nipponicum, Mass spectrometry, Monogenea, NGS, Secretome, Transcriptome,
- MeSH
- Molecular Sequence Annotation MeSH
- Chromatography, Liquid MeSH
- Phylogeny MeSH
- Carps * genetics MeSH
- Gene Expression Profiling MeSH
- Tandem Mass Spectrometry MeSH
- Transcriptome MeSH
- Trematoda * genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Eudiplozoon nipponicum (Goto, 1891) is a hematophagous monogenean ectoparasite which inhabits the gills of the common carp (Cyprinus carpio). Heavy infestation can lead to anemia and in conjunction with secondary bacterial infections cause poor health and eventual death of the host. This study is based on an innovative approach to protein localization which has never been used in parasitology before. Using laser capture microdissection, we dissected particular areas of the parasite body without contaminating the samples by surrounding tissue and in combination with analysis by mass spectrometry obtained tissue-specific proteomes of tegument, intestine, and parenchyma of our model organism, E. nipponicum. We successfully verified the presence of certain functional proteins (e.g. cathepsin L) in tissues where their presence was expected (intestine) and confirmed that there were no traces of these proteins in other tissues (tegument and parenchyma). Additionally, we identified a total of 2,059 proteins, including 72 peptidases and 33 peptidase inhibitors. As expected, the greatest variety was found in the intestine and the lowest variety in the parenchyma. Our results are significant on two levels. Firstly, we demonstrated that one can localize all proteins in one analysis and without using laboratory animals (antibodies for immunolocalization of single proteins). Secondly, this study offers the first complex proteomic data on not only the E. nipponicum but within the whole class of Monogenea, which was from this point of view until recently neglected.
- MeSH
- Carps parasitology MeSH
- Cathepsins analysis metabolism MeSH
- Laser Capture Microdissection MeSH
- Parenchymal Tissue metabolism MeSH
- Platyhelminths metabolism MeSH
- Peptide Hydrolases analysis metabolism MeSH
- Proteome analysis MeSH
- Proteomics methods MeSH
- Intestinal Mucosa metabolism MeSH
- Tandem Mass Spectrometry MeSH
- Chromatography, High Pressure Liquid MeSH
- Gills parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cathepsins MeSH
- Peptide Hydrolases MeSH
- Proteome MeSH