Most cited article - PubMed ID 31108989
Optimal Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) Cut-Offs: A Cross-Sectional Study in the Czech Population
The relationship between glycaemia and lipoprotein metabolism has not been completely clarified, and slight differences may be found between local authors, trials and evaluated parameters. Therefore this cross-sectional study investigated fasting cholesterol and glucose levels along with the determination of atherogenic index in a cohort of healthy individuals from the Czech Republic in relation to their fasting C-peptide levels. Data were collected between 2009 and 2018 and a total of 3189 individuals were stratified by C-peptide reference range (260-1730 pmol/l) into three groups - below (n = 111), within (n = 2952) and above (n = 126). Total, HDL, LDL cholesterol and atherogenic index were used to compare lipoprotein levels by relevant C-peptide concentrations. Participants using the supplements to affect lipid or glycaemia metabolism were excluded from this study. The evaluation of blood parameters in a fasting state included correlations between C-peptide and cholesterols, differences of variances (F-test) and the comparison of lipoprotein mean values (t-test) between the groups created by the C-peptide reference range. Mean values of total (4.9, 5.1, 5.3 mmol/l), LDL (2.6, 3.1, 3.4 mmol/l) cholesterol and atherogenic index (2.1, 2.8, 3.7) were higher with increasing C-peptide levels, whereas HDL was inversely associated with fasting C-peptide concentration. A positive and negative correlation between atherogenic index (rxy = 0.36) and HDL level (rxy = -0.36) with C-peptide values was found. Differences of HDL, LDL and atherogenic index were, in particular, recorded between the groups below and above the reference range of C-peptide (p ≤ 0.001). Considerable differences (p ≤ 0.001) were also observed for the same lipoprotein characteristics between the groups above and within the C-peptide reference. Generally, the type of cholesterol is crucial for the evaluation of specific changes concerning the C-peptide range. Lipoprotein concentrations differ in relation to C-peptide - not only below and above the physiological range, but also inside and outside of it. Conclusions: Fasting levels of cholesterol, plasma glucose, and atherogenic index were strongly associated with fasting C-peptide levels in healthy individuals. Our data suggest that fasting C-peptide could serve as a biomarker for the early detection of metabolic syndrome and/or insulin resistance prior to the manifestation of type 2 diabetes.
- Keywords
- Atherogenic index, C-peptide, Cholesterol, HDL, LDL, Lipoprotein,
- MeSH
- C-Peptide * blood MeSH
- Cholesterol * blood MeSH
- Diabetes Mellitus, Type 2 * metabolism MeSH
- Glucose MeSH
- Cholesterol, HDL MeSH
- Blood Glucose * chemistry MeSH
- Humans MeSH
- Lipoproteins MeSH
- Fasting MeSH
- Cross-Sectional Studies MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic epidemiology MeSH
- Names of Substances
- C-Peptide * MeSH
- Cholesterol * MeSH
- Glucose MeSH
- Cholesterol, HDL MeSH
- Blood Glucose * MeSH
- Lipoproteins MeSH
Background and Objectives: The mechanism of the relationship between glycemia and lipid metabolism has not been completely clarified, and slight differences may be found between authors and the kinds of evaluated parameters. Therefore, this study focused on possible changes of lipoprotein profile with regards to HOMA IR (Homeostatic Model Assessment for Insulin Resistance) cut-off 3.63, considered a signal of glucose metabolism alterations. Materials and Methods: The metabolic profiles of 3051 individuals were divided by HOMA IR values into two groups below cut-off 3.63, including (n = 2627) and above cut-off (n = 424). Patients taking medication or supplements to affect lipid, insulin, or glucose metabolism were excluded. Fasting glucose levels, insulin, and lipoproteins (total, HDL-high density and LDL-low density lipoprotein cholesterol) were compared between the groups with different HOMA IR. After analysis of data distribution, F-test and t-test were provided to compare variances and mean values. Results: The evaluation shows that the kind of cholesterol is crucial for a possible relationship with glucose metabolism and consequently confirms the changes of lipoproteins (HDL and LDL) by HOMA IR cut-off 3.63. Conclusions: The results of patients divided by HOMA IR cut-off 3.63 also suggest possible changes in the regulation of glucose metabolism and lipoprotein concentrations (HDL and LDL).
- Keywords
- HDL, HOMA IR, LDL, glucose, insulin, lipoprotein,
- MeSH
- Cholesterol MeSH
- Cholesterol, HDL MeSH
- Insulin MeSH
- Insulin Resistance * MeSH
- Blood Glucose MeSH
- Humans MeSH
- Triglycerides MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic epidemiology MeSH
- Names of Substances
- Cholesterol MeSH
- Cholesterol, HDL MeSH
- Insulin MeSH
- Blood Glucose MeSH
- Triglycerides MeSH
The study focused on changes or cut-offs of glycaemia, insulin resistance and body mass index within the C-peptide reference range (260-1730 pmol/l). The metabolic profile of individuals in the Czech Republic without diabetes (n = 3186) was classified by whiskers and quartiles of C-peptide into four groups with the following ranges: 290-510 (n = 694), 511-710 (n = 780), 711-950 (n = 720) and 951-1560 pmol/l (n = 673). Fasting levels of glucose, insulin, HOMA IR (Homeostasis Model Assessment for Insulin Resistance) and BMI (body mass index) were compared by a relevant C-peptide range. Participants taking medication to control glycaemia were excluded. The evaluation involved correlations between C-peptides and the above parameters, F-test and t-test. Changes in glucose levels (from 5.3 to 5.6 mmol/l) between the groups were lower in comparison to insulin, which reached relatively greater changes (from 4.0 to 14.2 mIU/l). HOMA IR increased considerably with growing C-peptide concentrations (0.9, 1.5, 2.2 and 3.5) and BMI values showed a similar trend (28.3, 31.0, 33.6 and 37.4). Considerable changes were observed for insulin (5.2 mIU/l, 57.8%) and HOMA IR (1.3, 61.3%) between groups with C-peptide ranges of 711-950 and 951-1560 pmol/l. Although correlations involving C-peptide, insulin, glucose and BMI seemed to be non-significant (up to rxy = 0.25), the mean values of insulin, HOMA IR and BMI showed statistically significant changes between all groups with various C-peptide concentrations (p ≤ 0.001). Generally, most important differences appeared in glucose metabolism and body mass index between C-peptide ranges of 711-950 and 951-1560 pmol/l. Absolute and relative changes of C-peptide concentrations are possible to use for the assessment of glucose regulatory mechanism. The spectrum of investigated parameters could be a useful tool to prevent the risks linked with the alterations of glycaemia.
- Keywords
- Body mass index, C-peptide, Glucose, Insulin resistance,
- MeSH
- C-Peptide MeSH
- Body Mass Index MeSH
- Insulin MeSH
- Insulin Resistance * MeSH
- Blood Glucose metabolism MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- C-Peptide MeSH
- Insulin MeSH
- Blood Glucose MeSH