Most cited article - PubMed ID 31127553
Analysis of Microbial Siderophores by Mass Spectrometry
Nonribosomal peptides and polyketides are natural products commonly synthesized by microorganisms. They are widely used in medicine, agriculture, environmental protection, and other fields. The structures of natural products are often analyzed by high-resolution tandem mass spectrometry, which becomes more popular with its increasing availability. However, the characterization of nonribosomal peptides and polyketides from tandem mass spectra is a nontrivial task because they are composed of many uncommon building blocks in addition to proteinogenic amino acids. Moreover, many of them have cyclic and branch-cyclic structures. Here, we introduce MassSpecBlocks - an open-source and web-based tool that converts the input chemical structures in SMILES format into sequences of building blocks. The structures can be searched in public databases PubChem, ChemSpider, ChEBI, NP Atlas, COCONUT, and Norine and edited in a user-friendly graphical interface. Although MassSpecBlocks can serve as a stand-alone database, our primary goal was to enable easy construction of custom sequence and building block databases, which can be used to annotate mass spectra in CycloBranch software. CycloBranch is an open-source, cross-platform, and stand-alone tool that we recently released for annotating spectra of linear, cyclic, branched, and branch-cyclic nonribosomal peptides and polyketide siderophores. The sequences and building blocks created in MassSpecBlocks can be easily exported into a plain text format used by CycloBranch. MassSpecBlocks is available online or can be installed entirely offline. It offers a REST API to cooperate with other tools.
- Keywords
- Building blocks, CycloBranch, Mass spectrometry, MassSpecBlocks, Nonribosomal petides, Polyketides, Siderophores, SmilesDrawer, Tanimoto similarity,
- Publication type
- Journal Article MeSH
Rhizopus spp. are the most common etiological agents of mucormycosis, causing over 90% mortality in disseminated infections. The diagnosis relies on histopathology, culture, and/or polymerase chain reaction. For the first time, the glycosylation of rhizoferrin (RHF) was described in a Rhizopus microsporus clinical isolate by liquid chromatography and accurate tandem mass spectrometry. The fermentation broth lyophilizate contained 345.3 ± 13.5, 1.2 ± 0.03, and 0.03 ± 0.002 mg/g of RHF, imido-RHF, and bis-imido-RHF, respectively. Despite a considerable RHF secretion rate, we did not obtain conclusive RHF detection from a patient with disseminated mucormycosis caused by the same R. microsporus strain. We hypothesize that parallel antimycotic therapy, RHF biotransformation, and metabolism compromised the analysis. On the other hand, the full profile of posaconazole metabolites was retrieved by our in house software CycloBranch.
- Keywords
- Rhizopus microsporus, glycoside, human isolate, liquid chromatography, mass spectrometry, metabolite, posaconazole metabolism, rhizoferrin, siderophore,
- Publication type
- Journal Article MeSH