Most cited article - PubMed ID 31161021
Contagious fear: Escape behavior increases with flock size in European gregarious birds
The coronavirus disease 2019 (COVID-19) pandemic and respective shutdowns dramatically altered human activities, potentially changing human pressures on urban-dwelling animals. Here, we use such COVID-19-induced variation in human presence to evaluate, across multiple temporal scales, how urban birds from five countries changed their tolerance towards humans, measured as escape distance. We collected 6369 escape responses for 147 species and found that human numbers in parks at a given hour, day, week or year (before and during shutdowns) had a little effect on birds' escape distances. All effects centered around zero, except for the actual human numbers during escape trial (hourly scale) that correlated negatively, albeit weakly, with escape distance. The results were similar across countries and most species. Our results highlight the resilience of birds to changes in human numbers on multiple temporal scales, the complexities of linking animal fear responses to human behavior, and the challenge of quantifying both simultaneously in situ.
- MeSH
- COVID-19 * epidemiology MeSH
- Humans MeSH
- Pandemics MeSH
- Birds * virology MeSH
- SARS-CoV-2 * MeSH
- Fear MeSH
- Escape Reaction MeSH
- Cities MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Cities MeSH
Species subjected to more variable environments should have greater phenotypic plasticity than those that are more restricted to specific habitat types leading to the expectation that migratory birds should be relatively more plastic than resident birds. We tested this comparatively by studying variation in flight initiation distance (FID), a well-studied antipredator behaviour. We predicted that variation in FID would be greater for migratory species because they encountered a variety of locations during their lives and therefore had less predictable assessments of risk compared to more sedentary species. Contrary to our prediction, we found that non-migratory species (sedentary) had greater variation in FID than migratory ones. Migratory and partially migratory birds had greater average FIDs than sedentary birds, suggesting that they were generally more wary. These results suggest that the predictability associated with not migrating permits more nuanced risk assessment which was seen in the greater variation in FID of sedentary bird species.
- MeSH
- Ecosystem MeSH
- Animal Migration * MeSH
- Plastics * MeSH
- Birds MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Plastics * MeSH
Actions taken against the COVID-19 pandemic have dramatically affected many aspects of human activity, giving us a unique opportunity to study how wildlife responds to the human-induced rapid environmental changes. The wearing of face masks, widely adopted to prevent pathogen transmission, represents a novel element in many parts of the world where wearing a face mask was rare before the COVID-19 outbreak. During September 2020-March 2021, we conducted large-scale multi-species field experiments to evaluate whether face mask-use in public places elicits a behavioural response in birds by comparing their escape and alert responses when approached by a researcher with or without a face mask in four European countries (Czech Republic, Finland, Hungary, and Poland) and Israel. We also tested whether these patterns differed between urban and rural sites. We employed Bayesian generalized linear mixed models (with phylogeny and site as random factors) controlling for a suite of covariates and found no association between the face mask-wear and flight initiation distance, alert distance, and fly-away distance, respectively, neither in urban nor in rural birds. However, we found that all three distances were strongly and consistently associated with habitat type and starting distance, with birds showing earlier escape and alert behaviour and longer distances fled when approached in rural than in urban habitats and from longer initial distances. Our results indicate that wearing face masks did not trigger observable changes in antipredator behaviour across the Western Palearctic birds, and our data did not support the role of habituation in explaining this pattern.
- Keywords
- Antipredator behaviour, Escape distance, Habituation, Human-induced rapid environmental change, Urbanization,
- MeSH
- Bayes Theorem MeSH
- COVID-19 * MeSH
- Humans MeSH
- Masks * MeSH
- Pandemics MeSH
- Birds MeSH
- SARS-CoV-2 MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH