Most cited article - PubMed ID 31207207
A survey of sand flies (Diptera, Phlebotominae) along recurrent transit routes in Serbia
Phlebotomine sand flies (Diptera: Psychodidae: Phlebotominae) are the principal vectors of Leishmania spp. (Kinetoplastida: Trypanosomatidae) worldwide. The subgenus Adlerius is taxonomically challenging and currently comprises about 20 species with a wide geographic distribution from eastern Asia to southeastern Europe. Some species are confirmed or suspected vectors of Leishmania donovani/infantum, L. major, and L. tropica, and are thus of high medical and veterinary relevance. A single record of Phlebotomus (Adlerius) simici in Austria from 2018 marks its sporadic northernmost and westernmost occurrence, with the origin of its appearance remaining unclear. To better understand Adlerius diversification and particularly post-glacial spread of Ph. simici to northern parts of Europe, we combined phylogenetic analyses with climatic suitability modelling. Divergence time estimates well supported the currently observed geographic distribution of the studied species and revealed several taxonomic challenges in the subgenus. We clearly delineated three distinct genetic and geographic Ph. simici lineages and phylogeographically assessed diversification that were well supported by climatic models. This study provides a comprehensive phylogenetic analysis of the subgenus Adlerius, enhancing our understanding of the diversification in relation to changing climate of this understudied group, and we present new insights into the post-glacial spread of Ph. simici, a suspected vector of L. infantum.
- Keywords
- Adlerius, COI, Central Europe, Divergence time, Phylogeography,
- MeSH
- Phylogeny MeSH
- Phylogeography MeSH
- Insect Vectors * genetics classification parasitology MeSH
- Phlebotomus * genetics classification MeSH
- Climate * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
Phlebotomine sand flies (Diptera: Phlebotominae) are the principal vectors of Leishmania spp. (Kinetoplastida: Trypanosomatidae). In Central Europe, Phlebotomus mascittii is the predominant species, but largely understudied. To better understand factors driving its current distribution, we infer patterns of genetic diversity by testing for signals of population expansion based on two mitochondrial genes and model current and past climate and habitat suitability for seven post-glacial maximum periods, taking 19 climatic variables into account. Consequently, we elucidate their connections by environmental-geographical network analysis. Most analyzed populations share a main haplotype tracing back to a single glacial maximum refuge area on the Mediterranean coasts of South France, which is supported by network analysis. The rapid range expansion of Ph. mascittii likely started in the early mid-Holocene epoch until today and its spread possibly followed two routes. The first one was through northern France to Germany and then Belgium, and the second across the Ligurian coast through present-day Slovenia to Austria, toward the northern Balkans. Here we present a combined approach to reveal glacial refugia and post-glacial spread of Ph. mascittii and observed discrepancies between the modelled and the current known distribution might reveal yet overlooked populations and potential further spread.
- MeSH
- Insect Vectors genetics MeSH
- Leishmania * MeSH
- Phlebotomus * genetics MeSH
- Psychodidae * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
BACKGROUND: Phlebotomine sand flies are the principal vectors of Leishmania spp. (Kinetoplastida: Trypanosomatidae). Information on sand flies in Central Europe is scarce and, to date, in Austria, only Phlebotomus mascittii has been recorded. In 2018 and 2019, entomological surveys were conducted in Austria with the aim to further clarify sand fly distribution and species composition. RESULTS: In 2019, a Ph. simici specimen was trapped in Austria for the first time. Analyses of two commonly used marker genes, cytochrome c oxidase I (coxI) and cytochrome b (cytb), revealed high sequence identity with Ph. simici specimens from North Macedonia and Greece. Phylogenetic analyses showed high intraspecific distances within Ph. simici, thereby dividing this species into three lineages: one each from Europe, Turkey and Israel. Low interspecific distances between Ph. simici, Ph. brevis and an as yet unidentified Adlerius sp. from Turkey and Armenia highlight how challenging molecular identification within the Adlerius complex can be, even when standard marker genes are applied. CONCLUSION: To our knowledge, this study reports the first finding of Ph. simici in Austria, representing the northernmost recording of this species to date. Moreover, it reveals valuable insights into the phylogenetic relationships among species within the subgenus Adlerius. Phlebotomus simici is a suspected vector of L. infantum and therefore of medical and veterinary importance. Potential sand fly expansion in Central Europe due to climatic change and the increasing import of Leishmania-infected dogs from endemic areas support the need for further studies on sand fly distribution in Austria and Central Europe in general.
- Keywords
- Adlerius, Central europe, Leishmania infantum, Phlebotomine sand fly, Refugial area,
- MeSH
- Cytochromes b genetics MeSH
- Phylogeny MeSH
- Insect Vectors classification genetics MeSH
- Genes, Insect MeSH
- Disease Vectors MeSH
- Classification MeSH
- Leishmaniasis, Visceral transmission MeSH
- Phlebotomus * classification genetics MeSH
- Psychodidae * classification genetics MeSH
- Electron Transport Complex IV genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Australia MeSH
- Names of Substances
- Cytochromes b MeSH
- Electron Transport Complex IV MeSH
Sand flies (Diptera: Psychodidae: Phlebotominae) are blood-feeding insects that transmit the protozoan parasites Leishmania spp. and various arthropod-borne (arbo) viruses. While in Mediterranean parts of Europe the sand fly fauna is diverse, in Central European countries including Austria mainly Phlebotomus mascittii is found, an assumed but unproven vector of Leishmania infantum. To update the currently understudied sand fly distribution in Austria, a sand fly survey was performed and other entomological catches were screened for sand flies. Seven new trapping locations of Ph. mascittii are reported including the first record in Vienna, representing also one of the first findings of this species in a city. Morphological identification, supported by fluorescence microscopy, was confirmed by two molecular approaches, including sequencing and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) protein profiling. Sand fly occurrence and activity were evaluated based on surveyed locations, habitat requirements and climatic parameters. Moreover, a first comparison of European Ph. mascittii populations was made by two marker genes, cytochrome c oxidase subunit 1 (COI), and cytochrome b (cytb), as well as MALDI-TOF mass spectra. Our study provides new important records of Ph. mascittii in Austria and valuable data for prospective entomological surveys. MALDI-TOF MS protein profiling was shown to be a reliable tool for differentiation between sand fly species. Rising temperatures and globalization demand for regular entomological surveys to monitor changes in species distribution and composition. This is also important with respect to the possible vector competence of Ph. mascittii.
- Keywords
- Central Europe, MALDI-TOF mass spectrometry, Transphlebotomus, autoimmunofluorescence, genotyping, leishmaniasis,
- Publication type
- Journal Article MeSH
BACKGROUND: Sand flies (Diptera: Psychodidae) are medically important vectors of human and veterinary disease-causing agents. Among these, the genus Leishmania (Kinetoplastida: Trypanosomatidae), and phleboviruses are of utmost importance. Despite such significance, updated information about sand fly fauna is missing for Balkan countries where both sand flies and autochtonous leishmaniases are historically present and recently re-emerging. Therefore, a review of historical data on sand fly species composition and distribution in the region was followed by a large-scale entomological survey in eight Balkan countries to provide a recent update on local sand fly fauna. METHODS: The literature search involved the period 1910-2019. The entomological survey was conducted at 1189 sampling stations in eight countries (Bulgaria, Bosnia and Herzegovina, Croatia, Kosovo, Montenegro, North Macedonia, Serbia and Slovenia), covering 49 settlements and 358 sampling sites between June and October in the years 2014 and 2016, accumulating 130 sampling days. We performed a total of 1189 trapping nights at these stations using two types of traps (light and CO2 attraction traps) in each location. Sampling was performed with a minimal duration of 6 (Montenegro) and a maximal of 47 days (Serbia) between 0-1000 m.a.s.l. Collected sand flies were morphologically identified. RESULTS: In total, 8490 sand fly specimens were collected. Morphological identification showed presence of 14 species belonging to genera Phlebotomus and Sergentomyia. Historical data were critically reviewed and updated with our recent findings. Six species were identified in Bosnia and Herzegovina (2 new records), 5 in Montenegro (2 new records), 5 in Croatia (2 new records), 9 in Bulgaria (5 new records), 11 in North Macedonia (1 new record), 10 in Serbia (no new records), 9 in Kosovo (3 new records) and 4 in Slovenia (no new records). CONCLUSIONS: This study presents results of the first integrated sand fly fauna survey of such scale for the Balkan region, providing first data on sand fly populations for four countries in the study area and presenting new species records for six countries and updated species lists for all surveyed countries. Our findings demonstrate presence of proven and suspected vectors of several Leishmania species.
- Keywords
- Balkans, Morphology, Phlebotomine, Sand fly, Species,
- MeSH
- Insect Vectors classification parasitology MeSH
- Leishmaniasis transmission MeSH
- Psychodidae classification parasitology MeSH
- Animal Distribution * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Geographicals
- Balkan Peninsula MeSH