• This record comes from PubMed

Reconstructing the post-glacial spread of the sand fly Phlebotomus mascittii Grassi, 1908 (Diptera: Psychodidae) in Europe

. 2023 Dec 08 ; 6 (1) : 1244. [epub] 20231208

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
WTZ CZ02/2020 Österreichische Agentur für Internationale Mobilität und Kooperation in Bildung, Wissenschaft und Forschung (Austrian Agency for International Cooperation in Education and Research)
01Kl2022 Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)

Links

PubMed 38066195
PubMed Central PMC10709326
DOI 10.1038/s42003-023-05616-1
PII: 10.1038/s42003-023-05616-1
Knihovny.cz E-resources

Phlebotomine sand flies (Diptera: Phlebotominae) are the principal vectors of Leishmania spp. (Kinetoplastida: Trypanosomatidae). In Central Europe, Phlebotomus mascittii is the predominant species, but largely understudied. To better understand factors driving its current distribution, we infer patterns of genetic diversity by testing for signals of population expansion based on two mitochondrial genes and model current and past climate and habitat suitability for seven post-glacial maximum periods, taking 19 climatic variables into account. Consequently, we elucidate their connections by environmental-geographical network analysis. Most analyzed populations share a main haplotype tracing back to a single glacial maximum refuge area on the Mediterranean coasts of South France, which is supported by network analysis. The rapid range expansion of Ph. mascittii likely started in the early mid-Holocene epoch until today and its spread possibly followed two routes. The first one was through northern France to Germany and then Belgium, and the second across the Ligurian coast through present-day Slovenia to Austria, toward the northern Balkans. Here we present a combined approach to reveal glacial refugia and post-glacial spread of Ph. mascittii and observed discrepancies between the modelled and the current known distribution might reveal yet overlooked populations and potential further spread.

Animal Health Department The AgriFood Institute of Aragon School of Veterinary Medicine University of Zaragoza Zaragoza Spain

Applied Zoology and Animal Conservation Group University of the Balearic Islands Palma de Mallorca Spain

Departamento de Producción y Sanidad Animal Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos Facultad de Veterinaria Universidad CEU Cardenal Herrera Valencia Spain

Department of Animal Health Animal Health and Zoonosis Research Group University of Cordoba Cordoba Spain

Department of Animal Production and Health Veterinary Public Health and Food Science and Technology Facultad de Veterinaria Universidad Cardenal Herrera CEU CEU Universities Valencia Spain

Department of Arbovirology Bernhard Nocht Institute for Tropical Medicine Hamburg Germany

Department of Biodiversity FAMNIT University of Primorska Koper Capodistria Slovenia

Department of Biology Ecology Section Faculty of Science VERG Laboratories Hacettepe University Ankara Turkey

Department of Clinical Sciences of Veterinary Medicine Faculty of Veterinary Medicine University of Sarajevo Sarajevo Bosnia and Herzegovina

Department of Parasitology Faculty of Science Charles University Prague Czech Republic

Department of Pathobiology and Epidemiology Veterinary Faculty University of Sarajevo Sarajevo Bosnia and Herzegovina

Department of Veterinary Medicine University of Bari Bari Italy

Division of Science Research and Development Federal Ministry of Defence Vienna Austria

Faculty of Science The University of Melbourne Parkville Australia

Faculty of Veterinary Sciences Bu Ali Sina University Hamedan Iran

German Mosquito Control Association Speyer Germany

Institut de Recherche pour le Développement Université de Montpellier UMR INTERTRYP Parasite Infectiology and Public Health Research group IRD CIRAD Montpellier France

Institute for Dipterology Speyer Germany

Institute of Biology University of Graz Graz Austria

Institute of Global Health Heidelberg University Heidelberg Germany

Institute of Specific Prophylaxis and Tropical Medicine Center for Pathophysiology Infectiology and Immunology Medical University of Vienna Vienna Austria

INTHERES Université de Toulouse INRAE ENVT Toulouse France

Laboratorio de investigación de Entomología Departamento de Zoología Facultad de Ciencias Biológicas Bloque B Universidad de Valencia Valencia Spain

Laboratory of Parasitology Micology and Medical Entomology Istituto Zooprofilattico Sperimentale delle Venezie Legnaro Padova Italy

Research Group Vector Control Bernhard Nocht Institute for Tropical Medicine Hamburg Germany

UMR MIVEGEC Institute of Research for Development Montpellier France

Université de Reims Champagne Ardenne ESCAPE EA7510 USC ANSES VECPAR SFR Cap Santé UFR de Pharmacie Reims France

University of Pannonia Sustainability Solutions Research Lab Veszprém Hungary

See more in PubMed

Ready PD. Biology of phlebotomine sand flies as vectors of disease agents. Annu. Rev. Entomol. 2013;58:227–250. doi: 10.1146/annurev-ento-120811-153557. PubMed DOI

WHO. Fact sheets: Leishmaniasis. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 19 July 2023) (2021).

Inceboz, T. Epidemiology and Ecology of Leishmaniasis. in Current Topics in Neglected Tropical Diseases (IntechOpen, 2019). 10.5772/intechopen.86359.

Ejov, M. & Dagne, D. Strategic framework for leishmaniasis control in the WHO European Region 2014–2020, World Health Organization. Regional Office for Europe, Copenhagen, Denmark. https://iris.who.int/handle/10665/329477 (2014).

Benallal KE, et al. Phlebotomine sand flies (Diptera: Psychodidae) of the Maghreb region: a systematic review of distribution, morphology, and role in the transmission of the pathogens. PLoS Negl. Trop. Dis. 2022;16:e0009952. doi: 10.1371/journal.pntd.0009952. PubMed DOI PMC

Kniha, E., Aspöck, H., Auer, H. & Walochnik, J. Leishmania infections and Leishmania species in central Europe. Wiener Tierärztliche Monatsschrift Vet Med. Austria110, Doc1 (2023).

Antoniou M, Gramiccia M, Molina R, Dvořák V, Volf P. The role of indigenous phlebotomine sandflies and mammals in the spreading of leishmaniasis agents in the Mediterranean region. Eurosurveillance. 2013;18:1–9. doi: 10.2807/1560-7917.ES2013.18.30.20540. PubMed DOI

Depaquit J, Grandadam M, Fouque F, Andry P, Peyrefitte C. Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: a review. Eurosurveillance. 2010;15:19507. doi: 10.2807/ese.15.10.19507-en. PubMed DOI

Ready PD. Leishmaniasis emergence in Europe. Eurosurveillance. 2010;15:19505. doi: 10.2807/ese.15.10.19505-en. PubMed DOI

Dvořák, V., Shaw, J. & Volf, P. The Leishmaniases: Old Neglected Tropical Diseases. The Leishmaniases: Old Neglected Tropical Diseases (Springer International Publishing, 2018). 10.1007/978-3-319-72386-0.

Ayhan N, Prudhomme J, Laroche L, Bañuls AL, Charrel RN. Broader geographical distribution of toscana virus in the mediterranean region suggests the existence of larger varieties of sand fly vectors. Microorganisms. 2020;8:114. doi: 10.3390/microorganisms8010114. PubMed DOI PMC

Artemiev MM. A revision of sandflies of the subgenus Adlerius (Diptera, Phlebotominae, Phlebotomus) Zool. Zh . 1980;59:1177–1192.

Chaskopoulou A, Giantsis IA, Demir S, Bon MC. Species composition, activity patterns and blood meal analysis of sand fly populations (Diptera: Psychodidae) in the metropolitan region of Thessaloniki, an endemic focus of canine leishmaniasis. Acta Trop. 2016;158:170–176. doi: 10.1016/j.actatropica.2016.03.006. PubMed DOI

Zanet S, et al. Epidemiology of Leishmania infantum, Toxoplasma gondii, and Neospora caninum in Rattus rattus in absence of domestic reservoir and definitive hosts. Vet. Parasitol. 2014;199:247–249. doi: 10.1016/j.vetpar.2013.10.023. PubMed DOI

Obwaller AG, et al. Could Phlebotomus mascittii play a role as a natural vector for Leishmania infantum? New data. Parasit. Vectors. 2016;9:458. doi: 10.1186/s13071-016-1750-8. PubMed DOI PMC

Alarcón-Elbal PM, et al. First findings and molecular data of phlebotomus mascittii (Diptera: Psychodidae) in the Cantabrian Cornice (Northern Spain.) J. Med. Entomol. 2021;58:2499–2503. doi: 10.1093/jme/tjab091. PubMed DOI

Bravo-Barriga D, Ruiz-Arrondo I, Peña RE, Lucientes J, Delacour-Estrella S. Phlebotomine sand flies (Diptera, Psychodidae) from Spain: an updated checklist and extended distributions. Zookeys. 2022;1106:81–99. doi: 10.3897/zookeys.1106.81432. PubMed DOI PMC

Depaquit J, Naucke TJ, Schmitt C, Ferté H, Léger N. A molecular analysis of the subgenus Transphlebotomus Artemiev, 1984 (Phlebotomus, Diptera, Psychodidae) inferred from ND4 mtDNA with new northern records of Phlebotomus mascittii Grassi, 1908. Parasitol. Res. 2005;95:113–116. doi: 10.1007/s00436-004-1254-x. PubMed DOI

Prudhomme J, et al. Ecology and spatiotemporal dynamics of sandflies in the Mediterranean Languedoc region (Roquedur area, Gard, France) Parasit. Vectors. 2015;8:1–14. doi: 10.1186/s13071-015-1250-2. PubMed DOI PMC

Naucke TJ, Menn B, Massberg D, Lorentz S. Winter activity of Phlebotomus (Transphlebotomus) mascittii, Grassi 1908 (Diptera: Psychodidae) on the island of Corsica. Parasitol. Res. 2008;103:477–479. doi: 10.1007/s00436-008-1002-8. PubMed DOI

Dantas-Torres F, et al. Ecology of phlebotomine sand flies and Leishmania infantum infection in a rural area of Southern Italy. Acta Trop. 2014;137:67–73. doi: 10.1016/j.actatropica.2014.04.034. PubMed DOI

Michelutti A, et al. Occurrence of phlebotomine sand flies (Diptera: Psychodidae) in the Northeastern plain of Italy. Parasit. Vectors. 2021;14:164. doi: 10.1186/s13071-021-04652-2. PubMed DOI PMC

Gradoni L, et al. Monitoring and detection of new endemic foci of canine leishmaniosis in northern continental Italy: an update from a study involving five regions (2018–2019) Vet. Parasitol. Reg. Stud. Rep. 2022;27:100676. PubMed

Dvorak V, et al. Sand flies (Diptera: Psychodidae) in eight Balkan countries: historical review and region-wide entomological survey. Parasit. Vectors. 2020;13:573. doi: 10.1186/s13071-020-04448-w. PubMed DOI PMC

Vaselek S, et al. Sand fly and Leishmania spp. survey in Vojvodina (Serbia): first detection of Leishmania infantum DNA in sand flies and the first record of Phlebotomus (Transphlebotomus) mascittii Grassi, 1908. Parasit. Vectors. 2017;10:444. doi: 10.1186/s13071-017-2386-z. PubMed DOI PMC

Vaselek S, et al. A survey of sand flies (Diptera, Phlebotominae) along recurrent transit routes in Serbia. Acta Trop. 2019;197:105063. doi: 10.1016/j.actatropica.2019.105063. PubMed DOI

Ivović V, Kalan K, Zupan S, Bužan E. Illegal waste sites as a potential micro foci of Mediterranean Leishmaniasis: first records of phlebotomine sand flies (Diptera: Psychodidae) from Slovenia. Acta Vet. Brno. 2015;65:348–357. doi: 10.1515/acve-2015-0029. DOI

Praprotnik E, Zupan S, Ivović V. Morphological and molecular identification of phlebotomus mascittii Grassi, 1908 populations from Slovenia. J. Med. Entomol. 2019;56:565–568. doi: 10.1093/jme/tjy176. PubMed DOI

Kasap OE, et al. Phylogeography of the subgenus Transphlebotomus Artemiev with description of two new species, Phlebotomus anatolicus n. sp. and Phlebotomus killicki n. sp. Infect. Genet. Evol. 2015;34:467–479. doi: 10.1016/j.meegid.2015.05.025. PubMed DOI

Melaun C, Krüger A, Werblow A, Klimpel S. New record of the suspected leishmaniasis vector Phlebotomus (Transphlebotomus) mascittii Grassi, 1908 (Diptera: Psychodidae: Phlebotominae) — the northernmost phlebotomine sandfly occurrence in the Palearctic region. Parasitol. Res. 2014;113:2295–2301. doi: 10.1007/s00436-014-3884-y. PubMed DOI

Naucke TJ, Lorentz S, Rauchenwald F, Aspöck H. Phlebotomus (Transphlebotomus) mascittii Grassi, 1908, in Carinthia: first record of the occurrence of sandflies in Austria (Diptera: Psychodidae: Phlebotominae) Parasitol. Res. 2011;109:1161–1164. doi: 10.1007/s00436-011-2361-0. PubMed DOI

Poeppl W, et al. Emergence of sandflies (Phlebotominae) in Austria, a Central European country. Parasitol. Res. 2013;112:4231–4237. doi: 10.1007/s00436-013-3615-9. PubMed DOI PMC

Kniha E, et al. Integrative approach to phlebotomus mascittii Grassi, 1908: first record in vienna with new morphological and molecular insights. Pathogens. 2020;9:1032. doi: 10.3390/pathogens9121032. PubMed DOI PMC

Oerther S, et al. Phlebotomine sand flies in Southwest Germany: an update with records in new locations. Parasit. Vectors. 2020;13:173. doi: 10.1186/s13071-020-04058-6. PubMed DOI PMC

Dvořák V, Hlavackova K, Kocisova A, Volf P. First record of Phlebotomus (Transphlebotomus) mascittii in Slovakia. Parasite. 2016;23:48. doi: 10.1051/parasite/2016061. PubMed DOI PMC

Trájer AJ. Checklist, distribution maps, bibliography of the Hungarian Phlebotomus (Diptera: Psychodidae) fauna complementing with the climate profile of the recent sandfly distribution areas in Hungary. Folia Faun. Slov. 2017;22:7–12.

Berdjane-Brouk Z, Charrel RN, Bitam I, Hamrioui B, Izri A. Record of Phlebotomus (Transphlebotomus) mascittii Grassi, 1908 and phlebotomus (Laroussius) chadli Rioux, Juminer & Gibily, 1966 female in Algeria. Parasite. 2011;18:337–339. doi: 10.1051/parasite/2011184337. PubMed DOI PMC

Fouque F, Reeder JC. Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: a look at the evidence. Infect. Dis. Poverty. 2019;8:51. doi: 10.1186/s40249-019-0565-1. PubMed DOI PMC

Esseghir S, Ready PD. Speciation of Phlebotomus sandflies of the subgenus Larroussius coincided with the late Miocene-Pliocene aridification of the Mediterranean subregion. Biol. J. Linn. Soc. 2000;70:189–219. doi: 10.1111/j.1095-8312.2000.tb00207.x. DOI

Depaquit J, et al. ITS 2 sequences heterogeneity in Phlebotomus sergenti and Phlebotomus similis (Diptera, Psychodidae): Possible consequences in their ability to transmit Leishmania tropica. Int. J. Parasitol. 2002;32:1123–1131. doi: 10.1016/S0020-7519(02)00088-7. PubMed DOI

Trájer AJ, Sebestyén V, Padisák J. The impacts of the Messinian Salinity Crisis on the biogeography of three Mediterranean sandfly (Diptera: Psychodidae) species. Geobios. 2021;65:51–66. doi: 10.1016/j.geobios.2021.02.003. DOI

Cruaud A, Lehrter V, Genson G, Rasplus J-Y, Depaquit J. Evolution, systematics and historical biogeography of sand flies of the subgenus Paraphlebotomus (Diptera, Psychodidae, Phlebotomus) inferred using restriction-site associated DNA markers. PLoS Negl. Trop. Dis. 2021;15:e0009479. doi: 10.1371/journal.pntd.0009479. PubMed DOI PMC

Depaquit J, et al. Molecular homogeneity in diverse geographical populations of Phlebotomus papatasi (Diptera, Psychodidae) inferred from ND4 mtDNA and ITS2 rDNA. Epidemiological consequences. Infect. Genet. Evol. 2008;8:159–170. doi: 10.1016/j.meegid.2007.12.001. PubMed DOI

Pavlou C, et al. A molecular phylogeny and phylogeography of Greek Aegean Island sand flies of the genus Phlebotomus (Diptera: Psychodidae) Arthropod. Syst. Phylogeny. 2022;80:137–154. doi: 10.3897/asp.80.e78315. DOI

Trájer AJ, Sebestyén V. The changing distribution of Leishmania infantum Nicolle, 1908 and its Mediterranean sandfly vectors in the last 140 kys. Sci. Rep. 2019;9:11820. doi: 10.1038/s41598-019-48350-7. PubMed DOI PMC

Aspöck H, Gerersdorfer T, Formayer H, Walochnik J. Sandflies and sandfly-borne infections of humans in Central Europe in the light of climate change. Wien. Klin. Wochenschr. 2008;120:24–29. doi: 10.1007/s00508-008-1072-8. PubMed DOI

Aspöck H, Walochnik J. When sandflies move north. Public Heal. J. 2009;20:24–31.

Trájer AJ. Palaeoclimatic models—predicted changes in the potential Neogene distribution patterns of Phlebotomus similis and Phlebotomus sergenti (Insecta: Diptera: Psychodidae) Palaeobiodivers. Palaeoenviron. 2022;102:149–172. doi: 10.1007/s12549-021-00483-2. DOI

Mahamdallie SS, Pesson B, Ready PD. Multiple genetic divergences and population expansions of a Mediterranean sandfly, Phlebotomus ariasi, in Europe during the Pleistocene glacial cycles. Heredity (Edinb.) 2011;106:714–726. doi: 10.1038/hdy.2010.111. PubMed DOI PMC

Golledge NR. Glaciation of Scotland during the Younger Dryas stadial: a review. J. Quat. Sci. 2009;25:550–566. doi: 10.1002/jqs.1319. DOI

Smith DE, Harrison S, Firth CR, Jordan JT. The early Holocene sea level rise. Quat. Sci. Rev. 2011;30:1846–1860. doi: 10.1016/j.quascirev.2011.04.019. DOI

Aspöck H. Postglacial formation and fluctuations of the biodiversity of Central Europe in the light of climate change. Parasitol. Res. 2008;103:7–10. doi: 10.1007/s00436-008-1057-6. PubMed DOI

Schmitt, T. 6 Eurasien. Molekulare Biogeographie: Gene in Raum und Zeit. 1st edn. Haupt Verlag, Bern (2020).

Schmitt T, Varga Z. Extra-Mediterranean refugia: the rule and not the exception? Front. Zool. 2012;9:22. doi: 10.1186/1742-9994-9-22. PubMed DOI PMC

Aspöck H. Fluctuations of biodiversity in Europe in light of climate change. Nov. Acta Leopoldina. 2010;111:35–44.

Birks, H. J. & Tinner, W. Past forests of Europe. https://boris.unibe.ch/80787/1/Past_forests_of_Europe.pdf (2016).

Trájer AJ. Placing of the second oldest red ochre mine in mainland Europe, Lovas, Hungary, to human, paleoenvironmental and paleobiogeographic context. Quat. Sci. Rev. 2022;292:107670. doi: 10.1016/j.quascirev.2022.107670. DOI

Tánczos B, et al. First Record of Autochthonous Canine Leishmaniasis in Hungary. Vector Borne Zoonotic Dis. 2012;12:588–594. doi: 10.1089/vbz.2011.0906. PubMed DOI PMC

Kniha E, et al. Ecology, seasonality and host preferences of Austrian Phlebotomus (Transphlebotomus) mascittii Grassi, 1908, populations. Parasit. Vectors. 2021;14:291. doi: 10.1186/s13071-021-04787-2. PubMed DOI PMC

Esseghir S, Ready PD, Killick-Kendrick R, Ben-Ismail R. Mitochondrial haplotypes and phylogeography of Phlebotomus vectors of Leishmania major. Insect Mol. Biol. 1997;6:211–225. doi: 10.1046/j.1365-2583.1997.00175.x. PubMed DOI

Aransay AM, Ready PD, Morillas-Marquez F. Population differentiation of Phlebotomus perniciosus in Spain following postglacial dispersal. Heredity (Edinb.) 2003;90:316–325. doi: 10.1038/sj.hdy.6800246. PubMed DOI

Perrotey S, et al. Posglacial dispersal of Phlebotomus perniciosus into France. Parasite. 2005;12:283–291. doi: 10.1051/parasite/2005124283. PubMed DOI

Hewitt GM. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 1996;58:247–276. doi: 10.1006/bijl.1996.0035. DOI

Hewitt GM. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 1999;68:87–112. doi: 10.1111/j.1095-8312.1999.tb01160.x. DOI

Haak W, et al. Ancient DNA from the First European farmers in 7500-year-old neolithic sites. Science (80-) 2005;310:1016–1018. doi: 10.1126/science.1118725. PubMed DOI

Sillero N, et al. Updated distribution and biogeography of amphibians and reptiles of Europe. Amphib. Repti. 2014;35:1–31. doi: 10.1163/15685381-00002935. DOI

Orshan L, et al. Distribution and Dispersal of Phlebotomus papatasi (Diptera: Psychodidae) in a Zoonotic Cutaneous Leishmaniasis Focus, the Northern Negev, Israel. PLoS Negl. Trop. Dis. 2016;10:e0004819. doi: 10.1371/journal.pntd.0004819. PubMed DOI PMC

Tonelli, G. B., Binder, C., Margonari, C. & Andrade Filho, J. D. Sand fly behavior: much more than weak-flying. Mem. Inst. Oswaldo Cruz116, e210230 (2021). PubMed PMC

Trájer, A. J., Hammer, T. & Padisák, J. Reflection of the Neogene–Quaternary phylogeography in the recent distribution limiting climatic factors of eight Mediterranean Phlebotomus species (Diptera: Psychodidae). J. Nat. Hist.52, 1763–1784 (2018).

Costa, L. J. Préhistoire de la Corse. [The prehistory of Corsica]. Kyrnos Publ. pour l’archéologie. Arch. from Orig. 2004-11-07 [In French] (2005).

Patton, M. Islands in Time: Island Sociography and Mediterranean prehistory (Routledge, 1996).

Trájer AJ. The changing malaria risk patterns in East‐Central Europe and the North Balkans in the last 27 000 years. J. Quat. Sci. 2021;36:1234–1253. doi: 10.1002/jqs.3357. DOI

Depaquit J, et al. Molecular and morphological systematics of the sandfly Sergentomyia (Sintonius) clydei Sinton, 1928 and questions about its record in the Seychelles. Infect. Genet. Evol. 2014;21:41–53. doi: 10.1016/j.meegid.2013.10.016. PubMed DOI

Lewis DJ. A taxonomic review of the genus Phlebotomus (Diptera: Psychodidae). Bull. Br. Museum. 1982;45:121–209.

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3:294–299. PubMed

Parvizi P, Ready PD. Molecular investigation of the population differentiation of Phlebotomus papatasi, important vector of L. major, in different habitats and regions of Iran. Iran. Biomed. J. 2006;10:69–77.

Nicholas, K. B. Genedoc: a tool for editing and annotating multiple sequence alignments. http://www.pscedu/biomed/genedoc (1997).

Larkin MA, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI

Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Templeton AR, Crandall KA, Sing CF. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992;132:619–633. doi: 10.1093/genetics/132.2.619. PubMed DOI PMC

Leigh JW, Bryant D. POPART: full‐feature software for haplotype network construction. Methods Ecol. Evol. 2015;6:1110–1116. doi: 10.1111/2041-210X.12410. DOI

Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–595. doi: 10.1093/genetics/123.3.585. PubMed DOI PMC

Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online. 2007;1:47–50. PubMed PMC

Bouckaert R, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC

Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 1981;17:368–376. doi: 10.1007/BF01734359. PubMed DOI

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Brower AVZ. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl Acad. Sci. 1994;91:6491–6495. doi: 10.1073/pnas.91.14.6491. PubMed DOI PMC

Farrell BD. Evolutionary assembly of the milkweed Fauna: cytochrome oxidase I and the age of tetraopesbeetles. Mol. Phylogenet. Evol. 2001;18:467–478. doi: 10.1006/mpev.2000.0888. PubMed DOI

Quek S-P, Davies SJ, Itino T, Pierce NE. Codiversification in an ant‐plant mutualism: stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) inhabitants of Macaranga (Euphorbiaceae) Evolution (N.Y) 2004;58:554–570. PubMed

Papadopoulou A, Anastasiou I, Vogler AP. Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Mol. Biol. Evol. 2010;27:1659–1672. doi: 10.1093/molbev/msq051. PubMed DOI

Kuhner MK. Coalescent genealogy samplers: windows into population history. Trends Ecol. Evol. 2009;24:86–93. doi: 10.1016/j.tree.2008.09.007. PubMed DOI PMC

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC

Miller MP. Alleles In Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 2005;96:722–724. doi: 10.1093/jhered/esi119. PubMed DOI

Karger, D. N. et al. CHELSA-TraCE21k v1.0. Downscaled transient temperature and precipitation data since the last glacial maximum. Clim. Past Discuss. 19, 439–456 (2021).

QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2019).

Nix, H. A. A biogeographic analysis of Australian snakes. in Atlas if elapid snakes of Australia: Australia flora and fauna series 7 (ed Longmore, R.), 4–15 (Australian Government Publishing Service, Canberra, 1986).

Trájer AJ, et al. The effect of climate change on the potential distribution of the European Phlebotomus species. Appl. Ecol. Appl. Ecol. Environ. Res. 2013;11:189–208. doi: 10.15666/aeer/1102_189208. DOI

Halmos, P. & Givant, S. Introduction to Boolean algebras. 8–13 (Springer, 2009).

Hijmans RJ, Graham CH. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 2006;12:2272–2281. doi: 10.1111/j.1365-2486.2006.01256.x. DOI

Austin M. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol. Modell. 2007;200:1–19. doi: 10.1016/j.ecolmodel.2006.07.005. DOI

Hammoud Z, Kramer F. Multilayer networks: aspects, implementations, and application in biomedicine. Big Data Anal. 2020;5:2. doi: 10.1186/s41044-020-00046-0. DOI

Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. in Proceedings of the Third International ICWSM COnference 361–362 (2009).

Besta, M. et al. Communication-Efficient Jaccard similarity for High-Performance Distributed Genome Comparisons. in 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 1122–1132 (IEEE, 2020). 10.1109/IPDPS47924.2020.00118.

Fordham DA, et al. PaleoView: a tool for generating continuous climate projections spanning the last 21,000 years at regional and global scales. Ecography. 2017;40:1348–1358. doi: 10.1111/ecog.03031. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...