Reconstructing the post-glacial spread of the sand fly Phlebotomus mascittii Grassi, 1908 (Diptera: Psychodidae) in Europe
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
WTZ CZ02/2020
Österreichische Agentur für Internationale Mobilität und Kooperation in Bildung, Wissenschaft und Forschung (Austrian Agency for International Cooperation in Education and Research)
01Kl2022
Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
PubMed
38066195
PubMed Central
PMC10709326
DOI
10.1038/s42003-023-05616-1
PII: 10.1038/s42003-023-05616-1
Knihovny.cz E-resources
- MeSH
- Insect Vectors genetics MeSH
- Leishmania * MeSH
- Phlebotomus * genetics MeSH
- Psychodidae * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
Phlebotomine sand flies (Diptera: Phlebotominae) are the principal vectors of Leishmania spp. (Kinetoplastida: Trypanosomatidae). In Central Europe, Phlebotomus mascittii is the predominant species, but largely understudied. To better understand factors driving its current distribution, we infer patterns of genetic diversity by testing for signals of population expansion based on two mitochondrial genes and model current and past climate and habitat suitability for seven post-glacial maximum periods, taking 19 climatic variables into account. Consequently, we elucidate their connections by environmental-geographical network analysis. Most analyzed populations share a main haplotype tracing back to a single glacial maximum refuge area on the Mediterranean coasts of South France, which is supported by network analysis. The rapid range expansion of Ph. mascittii likely started in the early mid-Holocene epoch until today and its spread possibly followed two routes. The first one was through northern France to Germany and then Belgium, and the second across the Ligurian coast through present-day Slovenia to Austria, toward the northern Balkans. Here we present a combined approach to reveal glacial refugia and post-glacial spread of Ph. mascittii and observed discrepancies between the modelled and the current known distribution might reveal yet overlooked populations and potential further spread.
Department of Arbovirology Bernhard Nocht Institute for Tropical Medicine Hamburg Germany
Department of Biodiversity FAMNIT University of Primorska Koper Capodistria Slovenia
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Department of Veterinary Medicine University of Bari Bari Italy
Division of Science Research and Development Federal Ministry of Defence Vienna Austria
Faculty of Science The University of Melbourne Parkville Australia
Faculty of Veterinary Sciences Bu Ali Sina University Hamedan Iran
German Mosquito Control Association Speyer Germany
Institute for Dipterology Speyer Germany
Institute of Biology University of Graz Graz Austria
Institute of Global Health Heidelberg University Heidelberg Germany
INTHERES Université de Toulouse INRAE ENVT Toulouse France
Research Group Vector Control Bernhard Nocht Institute for Tropical Medicine Hamburg Germany
UMR MIVEGEC Institute of Research for Development Montpellier France
University of Pannonia Sustainability Solutions Research Lab Veszprém Hungary
See more in PubMed
Ready PD. Biology of phlebotomine sand flies as vectors of disease agents. Annu. Rev. Entomol. 2013;58:227–250. doi: 10.1146/annurev-ento-120811-153557. PubMed DOI
WHO. Fact sheets: Leishmaniasis. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 19 July 2023) (2021).
Inceboz, T. Epidemiology and Ecology of Leishmaniasis. in Current Topics in Neglected Tropical Diseases (IntechOpen, 2019). 10.5772/intechopen.86359.
Ejov, M. & Dagne, D. Strategic framework for leishmaniasis control in the WHO European Region 2014–2020, World Health Organization. Regional Office for Europe, Copenhagen, Denmark. https://iris.who.int/handle/10665/329477 (2014).
Benallal KE, et al. Phlebotomine sand flies (Diptera: Psychodidae) of the Maghreb region: a systematic review of distribution, morphology, and role in the transmission of the pathogens. PLoS Negl. Trop. Dis. 2022;16:e0009952. doi: 10.1371/journal.pntd.0009952. PubMed DOI PMC
Kniha, E., Aspöck, H., Auer, H. & Walochnik, J. Leishmania infections and Leishmania species in central Europe. Wiener Tierärztliche Monatsschrift Vet Med. Austria110, Doc1 (2023).
Antoniou M, Gramiccia M, Molina R, Dvořák V, Volf P. The role of indigenous phlebotomine sandflies and mammals in the spreading of leishmaniasis agents in the Mediterranean region. Eurosurveillance. 2013;18:1–9. doi: 10.2807/1560-7917.ES2013.18.30.20540. PubMed DOI
Depaquit J, Grandadam M, Fouque F, Andry P, Peyrefitte C. Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: a review. Eurosurveillance. 2010;15:19507. doi: 10.2807/ese.15.10.19507-en. PubMed DOI
Ready PD. Leishmaniasis emergence in Europe. Eurosurveillance. 2010;15:19505. doi: 10.2807/ese.15.10.19505-en. PubMed DOI
Dvořák, V., Shaw, J. & Volf, P. The Leishmaniases: Old Neglected Tropical Diseases. The Leishmaniases: Old Neglected Tropical Diseases (Springer International Publishing, 2018). 10.1007/978-3-319-72386-0.
Ayhan N, Prudhomme J, Laroche L, Bañuls AL, Charrel RN. Broader geographical distribution of toscana virus in the mediterranean region suggests the existence of larger varieties of sand fly vectors. Microorganisms. 2020;8:114. doi: 10.3390/microorganisms8010114. PubMed DOI PMC
Artemiev MM. A revision of sandflies of the subgenus Adlerius (Diptera, Phlebotominae, Phlebotomus) Zool. Zh . 1980;59:1177–1192.
Chaskopoulou A, Giantsis IA, Demir S, Bon MC. Species composition, activity patterns and blood meal analysis of sand fly populations (Diptera: Psychodidae) in the metropolitan region of Thessaloniki, an endemic focus of canine leishmaniasis. Acta Trop. 2016;158:170–176. doi: 10.1016/j.actatropica.2016.03.006. PubMed DOI
Zanet S, et al. Epidemiology of Leishmania infantum, Toxoplasma gondii, and Neospora caninum in Rattus rattus in absence of domestic reservoir and definitive hosts. Vet. Parasitol. 2014;199:247–249. doi: 10.1016/j.vetpar.2013.10.023. PubMed DOI
Obwaller AG, et al. Could Phlebotomus mascittii play a role as a natural vector for Leishmania infantum? New data. Parasit. Vectors. 2016;9:458. doi: 10.1186/s13071-016-1750-8. PubMed DOI PMC
Alarcón-Elbal PM, et al. First findings and molecular data of phlebotomus mascittii (Diptera: Psychodidae) in the Cantabrian Cornice (Northern Spain.) J. Med. Entomol. 2021;58:2499–2503. doi: 10.1093/jme/tjab091. PubMed DOI
Bravo-Barriga D, Ruiz-Arrondo I, Peña RE, Lucientes J, Delacour-Estrella S. Phlebotomine sand flies (Diptera, Psychodidae) from Spain: an updated checklist and extended distributions. Zookeys. 2022;1106:81–99. doi: 10.3897/zookeys.1106.81432. PubMed DOI PMC
Depaquit J, Naucke TJ, Schmitt C, Ferté H, Léger N. A molecular analysis of the subgenus Transphlebotomus Artemiev, 1984 (Phlebotomus, Diptera, Psychodidae) inferred from ND4 mtDNA with new northern records of Phlebotomus mascittii Grassi, 1908. Parasitol. Res. 2005;95:113–116. doi: 10.1007/s00436-004-1254-x. PubMed DOI
Prudhomme J, et al. Ecology and spatiotemporal dynamics of sandflies in the Mediterranean Languedoc region (Roquedur area, Gard, France) Parasit. Vectors. 2015;8:1–14. doi: 10.1186/s13071-015-1250-2. PubMed DOI PMC
Naucke TJ, Menn B, Massberg D, Lorentz S. Winter activity of Phlebotomus (Transphlebotomus) mascittii, Grassi 1908 (Diptera: Psychodidae) on the island of Corsica. Parasitol. Res. 2008;103:477–479. doi: 10.1007/s00436-008-1002-8. PubMed DOI
Dantas-Torres F, et al. Ecology of phlebotomine sand flies and Leishmania infantum infection in a rural area of Southern Italy. Acta Trop. 2014;137:67–73. doi: 10.1016/j.actatropica.2014.04.034. PubMed DOI
Michelutti A, et al. Occurrence of phlebotomine sand flies (Diptera: Psychodidae) in the Northeastern plain of Italy. Parasit. Vectors. 2021;14:164. doi: 10.1186/s13071-021-04652-2. PubMed DOI PMC
Gradoni L, et al. Monitoring and detection of new endemic foci of canine leishmaniosis in northern continental Italy: an update from a study involving five regions (2018–2019) Vet. Parasitol. Reg. Stud. Rep. 2022;27:100676. PubMed
Dvorak V, et al. Sand flies (Diptera: Psychodidae) in eight Balkan countries: historical review and region-wide entomological survey. Parasit. Vectors. 2020;13:573. doi: 10.1186/s13071-020-04448-w. PubMed DOI PMC
Vaselek S, et al. Sand fly and Leishmania spp. survey in Vojvodina (Serbia): first detection of Leishmania infantum DNA in sand flies and the first record of Phlebotomus (Transphlebotomus) mascittii Grassi, 1908. Parasit. Vectors. 2017;10:444. doi: 10.1186/s13071-017-2386-z. PubMed DOI PMC
Vaselek S, et al. A survey of sand flies (Diptera, Phlebotominae) along recurrent transit routes in Serbia. Acta Trop. 2019;197:105063. doi: 10.1016/j.actatropica.2019.105063. PubMed DOI
Ivović V, Kalan K, Zupan S, Bužan E. Illegal waste sites as a potential micro foci of Mediterranean Leishmaniasis: first records of phlebotomine sand flies (Diptera: Psychodidae) from Slovenia. Acta Vet. Brno. 2015;65:348–357. doi: 10.1515/acve-2015-0029. DOI
Praprotnik E, Zupan S, Ivović V. Morphological and molecular identification of phlebotomus mascittii Grassi, 1908 populations from Slovenia. J. Med. Entomol. 2019;56:565–568. doi: 10.1093/jme/tjy176. PubMed DOI
Kasap OE, et al. Phylogeography of the subgenus Transphlebotomus Artemiev with description of two new species, Phlebotomus anatolicus n. sp. and Phlebotomus killicki n. sp. Infect. Genet. Evol. 2015;34:467–479. doi: 10.1016/j.meegid.2015.05.025. PubMed DOI
Melaun C, Krüger A, Werblow A, Klimpel S. New record of the suspected leishmaniasis vector Phlebotomus (Transphlebotomus) mascittii Grassi, 1908 (Diptera: Psychodidae: Phlebotominae) — the northernmost phlebotomine sandfly occurrence in the Palearctic region. Parasitol. Res. 2014;113:2295–2301. doi: 10.1007/s00436-014-3884-y. PubMed DOI
Naucke TJ, Lorentz S, Rauchenwald F, Aspöck H. Phlebotomus (Transphlebotomus) mascittii Grassi, 1908, in Carinthia: first record of the occurrence of sandflies in Austria (Diptera: Psychodidae: Phlebotominae) Parasitol. Res. 2011;109:1161–1164. doi: 10.1007/s00436-011-2361-0. PubMed DOI
Poeppl W, et al. Emergence of sandflies (Phlebotominae) in Austria, a Central European country. Parasitol. Res. 2013;112:4231–4237. doi: 10.1007/s00436-013-3615-9. PubMed DOI PMC
Kniha E, et al. Integrative approach to phlebotomus mascittii Grassi, 1908: first record in vienna with new morphological and molecular insights. Pathogens. 2020;9:1032. doi: 10.3390/pathogens9121032. PubMed DOI PMC
Oerther S, et al. Phlebotomine sand flies in Southwest Germany: an update with records in new locations. Parasit. Vectors. 2020;13:173. doi: 10.1186/s13071-020-04058-6. PubMed DOI PMC
Dvořák V, Hlavackova K, Kocisova A, Volf P. First record of Phlebotomus (Transphlebotomus) mascittii in Slovakia. Parasite. 2016;23:48. doi: 10.1051/parasite/2016061. PubMed DOI PMC
Trájer AJ. Checklist, distribution maps, bibliography of the Hungarian Phlebotomus (Diptera: Psychodidae) fauna complementing with the climate profile of the recent sandfly distribution areas in Hungary. Folia Faun. Slov. 2017;22:7–12.
Berdjane-Brouk Z, Charrel RN, Bitam I, Hamrioui B, Izri A. Record of Phlebotomus (Transphlebotomus) mascittii Grassi, 1908 and phlebotomus (Laroussius) chadli Rioux, Juminer & Gibily, 1966 female in Algeria. Parasite. 2011;18:337–339. doi: 10.1051/parasite/2011184337. PubMed DOI PMC
Fouque F, Reeder JC. Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: a look at the evidence. Infect. Dis. Poverty. 2019;8:51. doi: 10.1186/s40249-019-0565-1. PubMed DOI PMC
Esseghir S, Ready PD. Speciation of Phlebotomus sandflies of the subgenus Larroussius coincided with the late Miocene-Pliocene aridification of the Mediterranean subregion. Biol. J. Linn. Soc. 2000;70:189–219. doi: 10.1111/j.1095-8312.2000.tb00207.x. DOI
Depaquit J, et al. ITS 2 sequences heterogeneity in Phlebotomus sergenti and Phlebotomus similis (Diptera, Psychodidae): Possible consequences in their ability to transmit Leishmania tropica. Int. J. Parasitol. 2002;32:1123–1131. doi: 10.1016/S0020-7519(02)00088-7. PubMed DOI
Trájer AJ, Sebestyén V, Padisák J. The impacts of the Messinian Salinity Crisis on the biogeography of three Mediterranean sandfly (Diptera: Psychodidae) species. Geobios. 2021;65:51–66. doi: 10.1016/j.geobios.2021.02.003. DOI
Cruaud A, Lehrter V, Genson G, Rasplus J-Y, Depaquit J. Evolution, systematics and historical biogeography of sand flies of the subgenus Paraphlebotomus (Diptera, Psychodidae, Phlebotomus) inferred using restriction-site associated DNA markers. PLoS Negl. Trop. Dis. 2021;15:e0009479. doi: 10.1371/journal.pntd.0009479. PubMed DOI PMC
Depaquit J, et al. Molecular homogeneity in diverse geographical populations of Phlebotomus papatasi (Diptera, Psychodidae) inferred from ND4 mtDNA and ITS2 rDNA. Epidemiological consequences. Infect. Genet. Evol. 2008;8:159–170. doi: 10.1016/j.meegid.2007.12.001. PubMed DOI
Pavlou C, et al. A molecular phylogeny and phylogeography of Greek Aegean Island sand flies of the genus Phlebotomus (Diptera: Psychodidae) Arthropod. Syst. Phylogeny. 2022;80:137–154. doi: 10.3897/asp.80.e78315. DOI
Trájer AJ, Sebestyén V. The changing distribution of Leishmania infantum Nicolle, 1908 and its Mediterranean sandfly vectors in the last 140 kys. Sci. Rep. 2019;9:11820. doi: 10.1038/s41598-019-48350-7. PubMed DOI PMC
Aspöck H, Gerersdorfer T, Formayer H, Walochnik J. Sandflies and sandfly-borne infections of humans in Central Europe in the light of climate change. Wien. Klin. Wochenschr. 2008;120:24–29. doi: 10.1007/s00508-008-1072-8. PubMed DOI
Aspöck H, Walochnik J. When sandflies move north. Public Heal. J. 2009;20:24–31.
Trájer AJ. Palaeoclimatic models—predicted changes in the potential Neogene distribution patterns of Phlebotomus similis and Phlebotomus sergenti (Insecta: Diptera: Psychodidae) Palaeobiodivers. Palaeoenviron. 2022;102:149–172. doi: 10.1007/s12549-021-00483-2. DOI
Mahamdallie SS, Pesson B, Ready PD. Multiple genetic divergences and population expansions of a Mediterranean sandfly, Phlebotomus ariasi, in Europe during the Pleistocene glacial cycles. Heredity (Edinb.) 2011;106:714–726. doi: 10.1038/hdy.2010.111. PubMed DOI PMC
Golledge NR. Glaciation of Scotland during the Younger Dryas stadial: a review. J. Quat. Sci. 2009;25:550–566. doi: 10.1002/jqs.1319. DOI
Smith DE, Harrison S, Firth CR, Jordan JT. The early Holocene sea level rise. Quat. Sci. Rev. 2011;30:1846–1860. doi: 10.1016/j.quascirev.2011.04.019. DOI
Aspöck H. Postglacial formation and fluctuations of the biodiversity of Central Europe in the light of climate change. Parasitol. Res. 2008;103:7–10. doi: 10.1007/s00436-008-1057-6. PubMed DOI
Schmitt, T. 6 Eurasien. Molekulare Biogeographie: Gene in Raum und Zeit. 1st edn. Haupt Verlag, Bern (2020).
Schmitt T, Varga Z. Extra-Mediterranean refugia: the rule and not the exception? Front. Zool. 2012;9:22. doi: 10.1186/1742-9994-9-22. PubMed DOI PMC
Aspöck H. Fluctuations of biodiversity in Europe in light of climate change. Nov. Acta Leopoldina. 2010;111:35–44.
Birks, H. J. & Tinner, W. Past forests of Europe. https://boris.unibe.ch/80787/1/Past_forests_of_Europe.pdf (2016).
Trájer AJ. Placing of the second oldest red ochre mine in mainland Europe, Lovas, Hungary, to human, paleoenvironmental and paleobiogeographic context. Quat. Sci. Rev. 2022;292:107670. doi: 10.1016/j.quascirev.2022.107670. DOI
Tánczos B, et al. First Record of Autochthonous Canine Leishmaniasis in Hungary. Vector Borne Zoonotic Dis. 2012;12:588–594. doi: 10.1089/vbz.2011.0906. PubMed DOI PMC
Kniha E, et al. Ecology, seasonality and host preferences of Austrian Phlebotomus (Transphlebotomus) mascittii Grassi, 1908, populations. Parasit. Vectors. 2021;14:291. doi: 10.1186/s13071-021-04787-2. PubMed DOI PMC
Esseghir S, Ready PD, Killick-Kendrick R, Ben-Ismail R. Mitochondrial haplotypes and phylogeography of Phlebotomus vectors of Leishmania major. Insect Mol. Biol. 1997;6:211–225. doi: 10.1046/j.1365-2583.1997.00175.x. PubMed DOI
Aransay AM, Ready PD, Morillas-Marquez F. Population differentiation of Phlebotomus perniciosus in Spain following postglacial dispersal. Heredity (Edinb.) 2003;90:316–325. doi: 10.1038/sj.hdy.6800246. PubMed DOI
Perrotey S, et al. Posglacial dispersal of Phlebotomus perniciosus into France. Parasite. 2005;12:283–291. doi: 10.1051/parasite/2005124283. PubMed DOI
Hewitt GM. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 1996;58:247–276. doi: 10.1006/bijl.1996.0035. DOI
Hewitt GM. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 1999;68:87–112. doi: 10.1111/j.1095-8312.1999.tb01160.x. DOI
Haak W, et al. Ancient DNA from the First European farmers in 7500-year-old neolithic sites. Science (80-) 2005;310:1016–1018. doi: 10.1126/science.1118725. PubMed DOI
Sillero N, et al. Updated distribution and biogeography of amphibians and reptiles of Europe. Amphib. Repti. 2014;35:1–31. doi: 10.1163/15685381-00002935. DOI
Orshan L, et al. Distribution and Dispersal of Phlebotomus papatasi (Diptera: Psychodidae) in a Zoonotic Cutaneous Leishmaniasis Focus, the Northern Negev, Israel. PLoS Negl. Trop. Dis. 2016;10:e0004819. doi: 10.1371/journal.pntd.0004819. PubMed DOI PMC
Tonelli, G. B., Binder, C., Margonari, C. & Andrade Filho, J. D. Sand fly behavior: much more than weak-flying. Mem. Inst. Oswaldo Cruz116, e210230 (2021). PubMed PMC
Trájer, A. J., Hammer, T. & Padisák, J. Reflection of the Neogene–Quaternary phylogeography in the recent distribution limiting climatic factors of eight Mediterranean Phlebotomus species (Diptera: Psychodidae). J. Nat. Hist.52, 1763–1784 (2018).
Costa, L. J. Préhistoire de la Corse. [The prehistory of Corsica]. Kyrnos Publ. pour l’archéologie. Arch. from Orig. 2004-11-07 [In French] (2005).
Patton, M. Islands in Time: Island Sociography and Mediterranean prehistory (Routledge, 1996).
Trájer AJ. The changing malaria risk patterns in East‐Central Europe and the North Balkans in the last 27 000 years. J. Quat. Sci. 2021;36:1234–1253. doi: 10.1002/jqs.3357. DOI
Depaquit J, et al. Molecular and morphological systematics of the sandfly Sergentomyia (Sintonius) clydei Sinton, 1928 and questions about its record in the Seychelles. Infect. Genet. Evol. 2014;21:41–53. doi: 10.1016/j.meegid.2013.10.016. PubMed DOI
Lewis DJ. A taxonomic review of the genus Phlebotomus (Diptera: Psychodidae). Bull. Br. Museum. 1982;45:121–209.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3:294–299. PubMed
Parvizi P, Ready PD. Molecular investigation of the population differentiation of Phlebotomus papatasi, important vector of L. major, in different habitats and regions of Iran. Iran. Biomed. J. 2006;10:69–77.
Nicholas, K. B. Genedoc: a tool for editing and annotating multiple sequence alignments. http://www.pscedu/biomed/genedoc (1997).
Larkin MA, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Templeton AR, Crandall KA, Sing CF. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992;132:619–633. doi: 10.1093/genetics/132.2.619. PubMed DOI PMC
Leigh JW, Bryant D. POPART: full‐feature software for haplotype network construction. Methods Ecol. Evol. 2015;6:1110–1116. doi: 10.1111/2041-210X.12410. DOI
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–595. doi: 10.1093/genetics/123.3.585. PubMed DOI PMC
Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online. 2007;1:47–50. PubMed PMC
Bouckaert R, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC
Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 1981;17:368–376. doi: 10.1007/BF01734359. PubMed DOI
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Brower AVZ. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl Acad. Sci. 1994;91:6491–6495. doi: 10.1073/pnas.91.14.6491. PubMed DOI PMC
Farrell BD. Evolutionary assembly of the milkweed Fauna: cytochrome oxidase I and the age of tetraopesbeetles. Mol. Phylogenet. Evol. 2001;18:467–478. doi: 10.1006/mpev.2000.0888. PubMed DOI
Quek S-P, Davies SJ, Itino T, Pierce NE. Codiversification in an ant‐plant mutualism: stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) inhabitants of Macaranga (Euphorbiaceae) Evolution (N.Y) 2004;58:554–570. PubMed
Papadopoulou A, Anastasiou I, Vogler AP. Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Mol. Biol. Evol. 2010;27:1659–1672. doi: 10.1093/molbev/msq051. PubMed DOI
Kuhner MK. Coalescent genealogy samplers: windows into population history. Trends Ecol. Evol. 2009;24:86–93. doi: 10.1016/j.tree.2008.09.007. PubMed DOI PMC
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC
Miller MP. Alleles In Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 2005;96:722–724. doi: 10.1093/jhered/esi119. PubMed DOI
Karger, D. N. et al. CHELSA-TraCE21k v1.0. Downscaled transient temperature and precipitation data since the last glacial maximum. Clim. Past Discuss. 19, 439–456 (2021).
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2019).
Nix, H. A. A biogeographic analysis of Australian snakes. in Atlas if elapid snakes of Australia: Australia flora and fauna series 7 (ed Longmore, R.), 4–15 (Australian Government Publishing Service, Canberra, 1986).
Trájer AJ, et al. The effect of climate change on the potential distribution of the European Phlebotomus species. Appl. Ecol. Appl. Ecol. Environ. Res. 2013;11:189–208. doi: 10.15666/aeer/1102_189208. DOI
Halmos, P. & Givant, S. Introduction to Boolean algebras. 8–13 (Springer, 2009).
Hijmans RJ, Graham CH. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 2006;12:2272–2281. doi: 10.1111/j.1365-2486.2006.01256.x. DOI
Austin M. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol. Modell. 2007;200:1–19. doi: 10.1016/j.ecolmodel.2006.07.005. DOI
Hammoud Z, Kramer F. Multilayer networks: aspects, implementations, and application in biomedicine. Big Data Anal. 2020;5:2. doi: 10.1186/s41044-020-00046-0. DOI
Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. in Proceedings of the Third International ICWSM COnference 361–362 (2009).
Besta, M. et al. Communication-Efficient Jaccard similarity for High-Performance Distributed Genome Comparisons. in 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 1122–1132 (IEEE, 2020). 10.1109/IPDPS47924.2020.00118.
Fordham DA, et al. PaleoView: a tool for generating continuous climate projections spanning the last 21,000 years at regional and global scales. Ecography. 2017;40:1348–1358. doi: 10.1111/ecog.03031. DOI