Ecological setting of phlebotomine sand flies in the Republic of Kosovo
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39021964
PubMed Central
PMC11253276
DOI
10.1016/j.heliyon.2024.e33029
PII: S2405-8440(24)09060-1
Knihovny.cz E-zdroje
- Klíčová slova
- Balkan, Environmental analysis, Leishmania, Machine learning, Phlebovirus, Sand fly, Spatial patterns,
- Publikační typ
- časopisecké články MeSH
Sand flies (Diptera, Psychodidae) are the principal vectors of Leishmania spp., the causative agents of leishmaniasis, as well as phleboviruses. In the Balkans, the endemicity and spreading of sand fly-borne diseases are evident, particularly in the Republic of Kosovo, a country with a predominantly humid continental climate. To date, understanding the drivers behind the spatial structure and diversity patterns of sand fly communities in humid continental regions remains limited. Therefore, elucidating the geographical and ecological factors contributing to the presence of potential vector species in the country is crucial. We aimed to enhance our understanding of factors influencing sand fly occurrence in cool and wet wintering humid continental areas, which could serve as a model for other countries with similar climatic conditions. Therefore, we assessed the currently known sand fly fauna through detailed environmental analyses, including Voronoi tessellation patterns, entropy calculations, Principal Coordinate and Component Analyses, Hierarchical Clustering, Random Trees, and climatic suitability patterns. Notable differences in the ecological tolerance of the species were detected, and the most important climatic features limiting sand fly presence were wind speed and temperature seasonality. Sand flies were observed to prefer topographical environments with little roughness, and the modelled climatic suitability values indicated that, dominantly, the western plain regions of Kosovo harbour the most diverse sand fly fauna; and are the most threatened by sand fly-borne diseases. Phlebotomus neglectus and P. perfiliewi, both confirmed vectors for L. infantum and phleboviruses, were identified as two main species with vast distribution in Kosovo. Contrary to this, most other present species are relatively sparse and restricted to temperate rather than humid continental regions. Our findings reveal a diverse potential sand fly fauna in Kosovo, indicating the need for tailored strategies to address varying risks across the country's western and eastern regions in relation to leishmaniasis control amidst changing environmental conditions.
Zobrazit více v PubMed
Balaska S., Fotakis E.A., Chaskopoulou A., Vontas J. Chemical control and insecticide resistance status of sand fly vectors worldwide. PLoS Neglected Trop. Dis. 2021;15 doi: 10.1371/journal.pntd.0009586. PubMed DOI PMC
Dehghani R., Kassiri H., Khodkar I., Karami S. A comprehensive overview on sandfly fever. J. Acute Dis. 2021;10:98. doi: 10.4103/2221-6189.316673. DOI
Jancarova M., Polanska N., Volf P., Dvorak V. The role of sand flies as vectors of viruses other than phleboviruses. J. Gen. Virol. 2023;104:1837. doi: 10.1099/jgv.0.001837. PubMed DOI
Cecílio P., Cordeiro-da-Silva A., Oliveira F. Sand flies: basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun. Biol. 2022;5 doi: 10.1038/s42003-022-03240-z. PubMed DOI PMC
WHO Fact sheets: leishmaniasis. 2021. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
Scheufele C.J., Giesey R.L., Delost G.R. The global, regional, and national burden of leishmaniasis: an ecologic analysis from the Global Burden of Disease Study 1990-2017. J. Am. Acad. Dermatol. 2021;84:1203–1205. doi: 10.1016/j.jaad.2020.08.043. PubMed DOI
Vaselek S. Systematic review: Re-emergence of human leishmaniasis in the Balkans. Trop. Med. Int. Health. 2021;26:1189–1199. doi: 10.1111/TMI.13653. PubMed DOI
Vaselek S. Canine leishmaniasis in Balkan – a review of occurrence and epidemiology. Acta Trop. 2021;224 doi: 10.1016/j.actatropica.2021.106110. PubMed DOI
Ayhan N., Charrel R.N. Emergent sand fly–borne phleboviruses in the Balkan region. Emerg. Infect. Dis. 2018;24:2324–2330. doi: 10.3201/eid2412.171626. DOI
Kotnik T., Moreno J., Šoba B., Krt B., Skvarc M., Rataj A.V., Bajc M.G., Verbic U.R. Canine leishmaniasis prevalence in the Slovenian dog population. J. Vet. Res. 2021;65:161–167. doi: 10.2478/jvetres-2021-0028. PubMed DOI PMC
Tánczos B., Balogh N., Király L., Biksi I., Szeredi L., Gyurkovsky M., Scalone A., Fiorentino E., Gramiccia M., Farkas R. First record of autochthonous canine leishmaniasis in Hungary. Vector Borne Zoonotic Dis. 2012;12:588–594. doi: 10.1089/vbz.2011.0906. PubMed DOI PMC
Vaselek S. Systematic Review: Re‐emergence of human leishmaniasis in the Balkans. Trop. Med. Int. Health. 2021;26:1189–1199. doi: 10.1111/tmi.13653. PubMed DOI
Berriatua E., Maia C., Conceição C., Özbel Y., Töz S., Baneth G., Pérez-Cutillas P., Ortuño M., Muñoz C., Jumakanova Z., Pereira A., Rocha R., Monge-Maillo B., Gasimov E., Van der Stede Y., Torres G., Gossner C.M. Leishmaniases in the European union and neighboring countries. Emerg. Infect. Dis. 2021;27:1723. doi: 10.3201/EID2706.210239. PubMed DOI PMC
Vaselek S., Oguz G., Ayhan N., Ozbel Y., Kadriaj P., Ćupina A.I., Velo E., Muja N., Baymak D., Alishani M., Toz S., Nalcaci M., Sherifi K., Charrel R., Alten B., Petrić D. Sandfly surveillance and investigation of Leishmania spp. DNA in sandflies in Kosovo. Med. Vet. Entomol. 2020;34:394–401. doi: 10.1111/mve.12451. PubMed DOI
Xhekaj B., Stefanovska J., Sherifi K., Rexhepi A., Bizhga B., Rashikj L., Nikolovski M., Kniha E., Cvetkovikj A. Seroprevalence of canine leishmaniosis in asymptomatic dogs in Kosovo. Parasitol. Res. 2023;122:607–614. doi: 10.1007/s00436-022-07762-7. PubMed DOI
Xhekaj B., Hoxha I., Platzgummer K., Kniha E., Walochnik J., Sherifi K., Rexhepi A., Behluli B., Dvořák V., Fuehrer H.-P., Obwaller A.G., Poeppl W., Stefanovska J., Cvetkovikj A. First detection and molecular analysis of Leishmania infantum DNA in sand flies of Kosovo. Pathogens. 2023;12:1190. doi: 10.3390/pathogens12101190. PubMed DOI PMC
Szabó L., Heltai M., Lanszki J., Szűcs E. An indigenous predator, the golden jackal (Canis aureus L., 1758) spreading like an invasive species in Hungary. Bull. USAMV-CN. 2007;63–64 http://goldenjackal.eu/documents/GoldenJackalinHungaryspreadinglikeaninvasive.pdf
Dvorak V., Kasap O.E., Ivovic V., Mikov O., Stefanovska J., Martinkovic F., Omeragic J., Pajovic I., Baymak D., Oguz G., Hlavackova K., Gresova M., Gunay F., Vaselek S., Ayhan N., Lestinova T., Cvetkovikj A., Soldo D.K., Katerinova I., Tchakarova S., Yılmaz A., Karaoglu B., Iranzo J.R., Kadriaj P., Velo E., Ozbel Y., Petric D., Volf P., Alten B. Sand flies (Diptera: Psychodidae) in eight Balkan countries: historical review and region-wide entomological survey. Parasites Vectors. 2020;13:573. doi: 10.1186/s13071-020-04448-w. PubMed DOI PMC
Kniha E., Milchram M., Dvořák V., Halada P., Obwaller A.G., Poeppl W., Mooseder G., Volf P., Walochnik J. Ecology, seasonality and host preferences of Austrian Phlebotomus (Transphlebotomus) mascittii Grassi, 1908, populations, Parasit. Vector. 2021;14:291. doi: 10.1186/s13071-021-04787-2. PubMed DOI PMC
Trájer A.J. The potential impact of climate change on the seasonality of Phlebotomus neglectus, the vector of visceral leishmaniasis in the East Mediterranean region. Int. J. Environ. Health Res. 2021;31:932–950. doi: 10.1080/09603123.2019.1702150. PubMed DOI
Trájer A.J., Tánczos B., Hammer T., Padisák J. Solar radiation and temperature conditions as the determinants of occurrence of Phlebotomus neglectus Tonnoir (Diptera: Psychodidae) J. Entomol. Res. Soc. 2018;20:13–27. http://www.entomol.org/journal/index.php/JERS/article/view/1247
Wamai R.G., Kahn J., McGloin J., Ziaggi G. Visceral leishmaniasis: a global overview. J. Glob. Heal. Sci. 2020;2 doi: 10.35500/JGHS.2020.2.E3. DOI
Maia-Elkhoury A.N.S., Magalhães Lima D., Salomón O.D., Puppim Buzanovsky L., Saboyá-Díaz M.I., Valadas S.Y.O.B., Sanchez-Vazquez M.J. Interaction between environmental and socioeconomic determinants for cutaneous leishmaniasis risk in Latin America. Rev. Panam. Salud Públic. 2021;45:e83. doi: 10.26633/RPSP.2021.83. PubMed DOI PMC
Hosseini S.H., AllahKalteh E., Sofizadeh A. The effect of geographical and climatic factors on the distribution of Phlebotomus papatasi (Diptera: Psychodidae) in golestan province, an endemic focus of zoonotic cutaneous leishmaniasis in Iran, 2014, J. Arthropod. Borne. Dis. 2021;15:225. doi: 10.18502/JAD.V15I2.7491. PubMed DOI PMC
Michelutti A., Toniolo F., Bertola M., Grillini M., Simonato G., Ravagnan S., Montarsi F. Occurrence of Phlebotomine sand flies (Diptera: Psychodidae) in the northeastern plain of Italy. Parasites Vectors. 2021;14:164. doi: 10.1186/s13071-021-04652-2. PubMed DOI PMC
de Sousa‐Paula L.C., Pessoa F.A.C., Otranto D., Dantas‐Torres F. Beyond taxonomy: species complexes in New World phlebotomine sand flies. Med. Vet. Entomol. 2021;35:267–283. doi: 10.1111/mve.12510. PubMed DOI
Beck H.E., Zimmermann N.E., McVicar T.R., Vergopolan N., Berg A., Wood E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data. 2018;5 doi: 10.1038/sdata.2018.214. PubMed DOI PMC
Xhekaj B., Hoxha I., Platzgummer K., Stefanovska J., Dvořák V., Obwaller A.G., Poeppl W., Muja-Bajraktari N., Walochnik J., Trájer A.J., Sherifi K., Cvetkovikj A., Kniha E. Under Rev; 2024. Sand Fly Distribution and Blood Feeding Patterns in Kosovo: Implications for Disease Transmission.
Davis N.N., Badger J., Hahmann A.N., Hansen B.O., Mortensen N.G., Kelly M., Larsén X.G., Olsen B.T., Floors R., Lizcano G., Casso P., Lacave O., Bosch A., Bauwens I., Knight O.J., Potter van Loon A., Fox R., Parvanyan T., Krohn Hansen S.B., Heathfield D., Onninen M., Drummond R. The global wind Atlas: a high-resolution dataset of climatologies and associated web-based application. Bull. Am. Meteorol. Soc. 2023;104:1507–1525. doi: 10.1175/BAMS-D-21-0075.1. DOI
Fick S.E., Hijmans R.J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/JOC.5086. DOI
Miles R.E., Maillardet R.J. The basic structures of Voronoi and generalized Voronoi polygons. J. Appl. Probab. 1982;19(A):97–111.
Eigentler L., Stanley‐Wall N.R., Davidson F.A. A theoretical framework for multi‐species range expansion in spatially heterogeneous landscapes. Oikos. 2022;2022 doi: 10.1111/oik.09077. DOI
Guan Y., Liu J., Chen P., Wang Y., Liang D., Xue Y., Chen H., Liu Z., Pellikka P. Synergistic impact of complex topography and climate variability on the loss of microclimate heterogeneity in Southeast Asia. Geophys. Res. Lett. 2023;50 doi: 10.1029/2023GL104965. DOI
Ringwaldt E.M., Brook B.W., Buettel J.C., Cunningham C.X., Fuller C., Gardiner R., Hamer R., Jones M., Martin A.M., Carver S. Host, environment, and anthropogenic factors drive landscape dynamics of an environmentally transmitted pathogen: sarcoptic mange in the bare‐nosed wombat. J. Anim. Ecol. 2023;92:1786–1801. doi: 10.1111/1365-2656.13960. PubMed DOI
Lacaze B., Dudek J., Picard J. QGIS Generic Tools. Wiley; 2018. GRASS GIS software with QGIS; pp. 67–106. DOI
Mesa-Mingorance J.L., Ariza-López F.J. Accuracy assessment of digital elevation models (DEMs): a critical review of practices of the past three decades. Rem. Sens. 2020;12:2630. doi: 10.3390/rs12162630. DOI
Delmas E., Besson M., Brice M., Burkle L.A., Dalla Riva G.V., Fortin M., Gravel D., Guimarães P.R., Hembry D.H., Newman E.A., Olesen J.M., Pires M.M., Yeakel J.D., Poisot T. Analysing ecological networks of species interactions. Biol. Rev. 2019;94:16–36. doi: 10.1111/brv.12433. PubMed DOI
Biella P., Ollerton J., Barcella M., Assini S. Network analysis of phenological units to detect important species in plant-pollinator assemblages: can it inform conservation strategies? Community Ecol. 2017;18:1–10. doi: 10.1556/168.2017.18.1.1. DOI
Kadiyala A., Kumar A. Applications of Python to evaluate environmental data science problems. Environ. Prog. Sustain. Energy. 2017;36:1580–1586. doi: 10.1002/ep.12786. DOI
Roberts E.A., Sheley R.L., Lawrence R.L. Using sampling and inverse distance weighted modeling for mapping invasive plants, West. North Am. Nat. 2004;64:312–323.
Chao A., Wang Y.T., Jost L. Entropy and the species accumulation curve: a novel entropy estimator via discovery rates of new species. Methods Ecol. Evol. 2013;4:1091–1100. doi: 10.1111/2041-210X.12108. DOI
Zebari R., Abdulazeez A., Zeebaree D., Zebari D., Saeed J. A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction. J. Appl. Sci. Technol. Trends. 2020;1:56–70. doi: 10.38094/jastt1224. DOI
Mathur M., Mathur P., Purohit H. Ecological niche modelling of a critically endangered species Commiphora wightii (Arn.) Bhandari using bioclimatic and non-bioclimatic variables. Ecol. Process. 2023;12:8. doi: 10.1186/s13717-023-00423-2. DOI
Ivanisevic J., Benton H.P., Rinehart D., Epstein A., Kurczy M.E., Boska M.D., Gendelman H.E., Siuzdak G. An interactive cluster heat map to visualize and explore multidimensional metabolomic data. Metabolomics. 2015;11:1029–1034. doi: 10.1007/s11306-014-0759-2. PubMed DOI PMC
Pimentel J.M., Alvim M.S., Campos M.F.M., Macharet D.G. Information-driven rapidly-exploring random tree for efficient environment exploration. J. Intell. Rob. Syst. 2018;91:313–331. doi: 10.1007/s10846-017-0709-0. DOI
Ali J., Khan R., Ahmad N., Maqsood I. Random forests and decision trees. Int. J. Comput. Sci. Issues. 2012;9:272.
Hijmans R.J., Graham C.H. The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biol. 2006;12:2272–2281. doi: 10.1111/j.1365-2486.2006.01256.x. DOI
Trájer A.J., Bede-Fazekas A., Hufnagel L., Horvath L., Bobvos J., Paldy A. The effect of climate change on the potential distribution of the European Phlebotomus species. Appl. Ecol. Environ. Res. 2013;11:189–208.
Trájer A.J. Checklist, distribution maps, bibliography of the Hungarian Phlebotomus (Diptera: Psychodidae) fauna complementing with the climate profile of the recent sandfly distribution areas in Hungary, Folia Faun. Slovaca. 2017;22:7–12.
Dumitrache M.O., Nachum-Biala Y., Gilad M., Mircean V., Cazan C.D., Mihalca A.D., Baneth G. The quest for canine leishmaniasis in Romania: the presence of an autochthonous focus with subclinical infections in an area where disease occurred. Parasites Vectors. 2016;9:297. doi: 10.1186/s13071-016-1583-5. PubMed DOI PMC
Alten B., Maia C., Afonso M.O., Campino L., Jiménez M., González E., Molina R., Bañuls A.L., Prudhomme J., Vergnes B., Toty C., Cassan C., Rahola N., Thierry M., Sereno D., Bongiorno G., Bianchi R., Khoury C., Tsirigotakis N., Dokianakis E., Antoniou M., Christodoulou V., Mazeris A., Karakus M., Ozbel Y., Arserim S.K., Erisoz Kasap O., Gunay F., Oguz G., Kaynas S., Tsertsvadze N., Tskhvaradze L., Giorgobiani E., Gramiccia M., Volf P., Gradoni L. Seasonal dynamics of phlebotomine sand fly species proven vectors of mediterranean leishmaniasis caused by Leishmania infantum. PLoS Neglected Trop. Dis. 2016;10 doi: 10.1371/journal.pntd.0004458. PubMed DOI PMC
Prudhomme J., Rahola N., Toty C., Cassan C., Roiz D., Vergnes B., Thierry M., Rioux J.A., Alten B., Sereno D., Bañuls A.L. Ecology and spatiotemporal dynamics of sandflies in the Mediterranean Languedoc region (Roquedur area, Gard, France) Parasites Vectors. 2015;8:1–14. PubMed PMC
Cazan C.D., Păstrav I.R., Györke A., Oguz G., Alten B., Mihalca A.D. Seasonal dynamics of a population of Phlebotomus (larroussius) perfiliewi parrot, 1930 (Diptera: Psychodidae) in north-eastern Romania. Parasitol. Res. 2019;118:1371–1384. doi: 10.1007/s00436-019-06296-9. PubMed DOI
Pavlou C., Dokianakis E., Tsirigotakis N., Christodoulou V., Özbel Y., Antoniou M., Poulakakis N. A molecular phylogeny and phylogeography of Greek Aegean Island sand flies of the genus Phlebotomus (Diptera: Psychodidae) Arthropod Syst. Phylogeny. 2022;80:137–154. doi: 10.3897/asp.80.e78315. DOI
Kniha E., Dvořák V., Koblmüller S., Prudhomme J., Ivović V., Hoxha I., Oerther S., Heitmann A., Lühken R., Bañuls A.-L., Sereno D., Michelutti A., Toniolo F., Alarcón-Elbal P.M., Bravo-Barriga D., González M.A., Lucientes J., Colella V., Otranto D., Bezerra-Santos M.A., Kunz G., Obwaller A.G., Depaquit J., Alić A., Kasap O.E., Alten B., Omeragic J., Volf P., Walochnik J., Sebestyén V., Trájer A.J. Reconstructing the post-glacial spread of the sand fly Phlebotomus mascittii grassi, 1908 (Diptera: Psychodidae) in Europe, commun. Biol. 2023;6:1244. doi: 10.1038/s42003-023-05616-1. PubMed DOI PMC
Tonelli G.B., Binder C., Margonari C., Andrade Filho J.D. Sand fly behavior: much more than weak-flying. Mem. Inst. Oswaldo Cruz. 2021;116 doi: 10.1590/0074-02760210230. PubMed DOI PMC
Fischer D., Moeller P., Thomas S.M., Naucke T.J., Beierkuhnlein C. Combining climatic projections and dispersal ability: a method for estimating the responses of sandfly vector species to climate change. PLoS Neglected Trop. Dis. 2011;5 doi: 10.1371/journal.pntd.0001407. PubMed DOI PMC
Herrero M.V., Yarnell W.E., Schmidtmann E.T. Landscape associations of the sand fly, Lutzomyia (Heleocyrtomyia) Apache (Diptera: Psychodidae), in the southwestern United States: a geographic information analysis. J. Vector Ecol. 2004;29:205–211. (Accessed 18 April 2024) PubMed
Faiman R., Kirstein O.D., Warburg A., Faiman R., Kirstein O., Moncaz A., Guetta H., Warburg A. Studies on the flight patterns of foraging sand flies. Elsevier. 2011;120:110–114. doi: 10.1016/j.actatropica.2011.06.015. PubMed DOI
de Oliveira E.F., dos Santos Fernandes C.E., Araújo e Silva E., Brazil R.P., de Oliveira A.G. Climatic factors and population density of Lutzomyia longipalpis (Lutz & Neiva, 1912) in an urban endemic area of visceral leishmaniasis in midwest Brazil. J. Vector Ecol. 2013;38:224–228. doi: 10.1111/j.1948-7134.2013.12034.x. PubMed DOI
Sawalha S.S., Shtayeh M.S., Khanfar H.M., Warburg A., Abdeen Z.A. Phlebotomine sand flies (Diptera: Psychodidae) of the Palestinian west bank: potential vectors of leishmaniasis. J. Med. Entomol. 2003;40:321–328. doi: 10.1603/0022-2585-40.3.321. PubMed DOI
Gálvez R., Descalzo M.A., Miró G., Jiménez M.I., Martín O., Dos Santos-Brandao F., Guerrero I., Cubero E., Molina R. Seasonal trends and spatial relations between environmental/meteorological factors and leishmaniosis sand fly vector abundances in Central Spain. Acta Trop. 2010;115:95–102. doi: 10.1016/j.actatropica.2010.02.009. PubMed DOI
Hu H.-M., Trouet V., Spötl C., Tsai H.-C., Chien W.-Y., Sung W.-H., Michel V., Yu J.-Y., Valensi P., Jiang X., Duan F., Wang Y., Mii H.-S., Chou Y.-M., Lone M.A., Wu C.-C., Starnini E., Zunino M., Watanabe T.K., Watanabe T., Hsu H.-H., Moore G.W.K., Zanchetta G., Pérez-Mejías C., Lee S.-Y., Shen C.-C. Tracking westerly wind directions over Europe since the middle Holocene. Nat. Commun. 2022;13:7866. doi: 10.1038/s41467-022-34952-9. PubMed DOI PMC
Oerther S., Jöst H., Heitmann A., Lühken R., Krüger A., Steinhausen I., Brinker C., Lorentz S., Marx M., Schmidt-Chanasit J., Naucke T., Becker N. Phlebotomine sand flies in Southwest Germany: an update with records in new locations. Parasites Vectors. 2020;13:173. doi: 10.1186/s13071-020-04058-6. PubMed DOI PMC
Dvořák V., Hlavackova K., Kocisova A., Volf P. First record of Phlebotomus (transphlebotomus) mascittii in Slovakia. Parasite. 2016;23:48. doi: 10.1051/parasite/2016061. PubMed DOI PMC
Kniha E., Dvořák V., Halada P., Milchram M., Obwaller A.G., Kuhls K., Schlegel S., Köhsler M., Poeppl W., Bakran-Lebl K., Fuehrer H.-P., Volfová V., Mooseder G., Ivovic V., Volf P., Walochnik J. Integrative approach to Phlebotomus mascittii grassi, 1908: first record in Vienna with new morphological and molecular insights. Pathogens. 2020;9:1032. doi: 10.3390/pathogens9121032. PubMed DOI PMC
Defilippo F., Carrera M., Lelli D., Canziani S., Moreno A., Sozzi E., Manarolla G., Chiari M., Marco F., Cerioli M.P., Lavazza A. Distribution of phlebotomine sand flies (Diptera: Psychodidae) in the lombardy region, northern Italy. Insects. 2022;13:463. doi: 10.3390/INSECTS13050463/S1. PubMed DOI PMC
Xhekaj B., Alishani M., Rexhepi A., Jakupi X., Sherifi K. Serological survey of canine leishmaniasis in southwestern region of Kosovo. Vet. Ital. 2020;56:47–50. doi: 10.12834/VetIt.1345.7407.5. PubMed DOI
Ayhan N., Sherifi K., Taraku A., Bërxholi K., Charrel R.N. High rates of neutralizing antibodies to Toscana and sandfly fever Sicilian viruses in livestock, Kosovo. Emerg. Infect. Dis. 2017;23:989–992. doi: 10.3201/eid2306.161929. PubMed DOI PMC
Velo E., Bongiorno G., Kadriaj P., Myrseli T., Crilly J., Lika A., Mersini K., Di Muccio T., Bino S., Gramiccia M., Gradoni L., Maroli M. The current status of phlebotomine sand flies in Albania and incrimination of Phlebotomus neglectus (Diptera, Psychodidae) as the main vector of Leishmania infantum. PLoS One. 2017;12 doi: 10.1371/journal.pone.0179118. PubMed DOI PMC
Bino S., Velo E., Kadriaj P., Kota M., Moureau G., de Lamballerie X., Bagramian A., Charrel R.N., Ayhan N. Detection of a novel phlebovirus (Drin virus) from sand flies in Albania. Viruses. 2019;11:469. doi: 10.3390/v11050469. PubMed DOI PMC
Mulić R., Ćustović A., Ropac D., Tripković I., Stojanović D., Klišmanić Z. Occurence of visceral and cutaneous leishmaniasis in Croatia. Mil. Med. 2009;174:206–doi. doi: 10.7205/MILMED-D-58-5608. PubMed DOI
Ayhan N., Alten B., Ivovic V., Cvetkovikj A., Stefanovska J., Martinkovic F., Piorkowski G., Moureau G., Gould E.A., H-O Pettersson J., de Lamballerie X., Charrel R.N. Field surveys in Croatia and North Macedonia reveal two novel phleboviruses circulating in sandflies. J. Gen. Virol. 2021;102:1674. doi: 10.1099/jgv.0.001674. PubMed DOI