Factors influencing the efficacy of recombinant tissue plasminogen activator: Implications for ischemic stroke treatment
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38843177
PubMed Central
PMC11156348
DOI
10.1371/journal.pone.0302269
PII: PONE-D-23-27132
Knihovny.cz E-zdroje
- MeSH
- cévní mozková příhoda farmakoterapie MeSH
- erytrocyty účinky léků metabolismus MeSH
- fibrinolytika terapeutické užití MeSH
- hemokoagulace účinky léků MeSH
- heparin * terapeutické užití MeSH
- ischemická cévní mozková příhoda * farmakoterapie MeSH
- lidé MeSH
- rekombinantní proteiny * terapeutické užití MeSH
- tkáňový aktivátor plazminogenu * terapeutické užití MeSH
- trombolytická terapie * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fibrinolytika MeSH
- heparin * MeSH
- rekombinantní proteiny * MeSH
- tkáňový aktivátor plazminogenu * MeSH
Intravenous thrombolysis with a recombinant tissue plasminogen activator (rt-PA) is the first-line treatment of acute ischemic stroke. However, successful recanalization is relatively low and the underlying processes are not completely understood. The goal was to provide insights into clinically important factors potentially limiting rt-PA efficacy such as clot size, rt-PA concentration, clot age and also rt-PA in combination with heparin anticoagulant. We established a static in vitro thrombolytic model based on red blood cell (RBC) dominant clots prepared using spontaneous clotting from the blood of healthy donors. Thrombolysis was determined by clot mass loss and by RBC release. The rt-PA became increasingly less efficient for clots larger than 50 μl at a clinically relevant concentration of 1.3 mg/l. A tenfold decrease or increase in concentration induced only a 2-fold decrease or increase in clot degradation. Clot age did not affect rt-PA-induced thrombolysis but 2-hours-old clots were degraded more readily due to higher activity of spontaneous thrombolysis, as compared to 5-hours-old clots. Finally, heparin (50 and 100 IU/ml) did not influence the rt-PA-induced thrombolysis. Our study provided in vitro evidence for a clot size threshold: clots larger than 50 μl are hard to degrade by rt-PA. Increasing rt-PA concentration provided limited thrombolytic efficacy improvement, whereas heparin addition had no effect. However, the higher susceptibility of younger clots to thrombolysis may prompt a shortened time from the onset of stroke to rt-PA treatment.
Department of Anatomy Faculty of Medicine Masaryk University Brno Czech Republic
Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367: 1747–1757. doi: 10.1016/S0140-6736(06)68770-9 PubMed DOI
Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, et al.. (2009) 22. Glossary. Circulation 119: e21–e181. PubMed
Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, et al.. (2015) 2015 AHA/ASA Focused Update of the 2013 Guidelines for the Early Management of Patients With Acute Ischemic Stroke Regarding Endovascular Treatment, A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 46: 3020–3035. PubMed
Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, et al.. (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359: 1317–1329. doi: 10.1056/NEJMoa0804656 PubMed DOI
NINDS_Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333: 1581–1588. doi: 10.1056/NEJM199512143332401 PubMed DOI
Meunier JM, Wenker E, Lindsell CJ, Shaw GJ (2013) Individual lytic efficacy of recombinant tissue plasminogen activator in an in vitro human clot model: rate of “nonresponse”. Acad Emerg Med 20: 449–455. doi: 10.1111/acem.12133 PubMed DOI PMC
Kamalian S, Morais LT, Pomerantz SR, Aceves M, Sit SP, et al.. (2013) Clot length distribution and predictors in anterior circulation stroke: implications for intra-arterial therapy. Stroke 44: 3553–3556. doi: 10.1161/STROKEAHA.113.003079 PubMed DOI PMC
Riedel CH, Zimmermann P, Jensen-Kondering U, Stingele R, Deuschl G, et al.. (2011) The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 42: 1775–1777. doi: 10.1161/STROKEAHA.110.609693 PubMed DOI
Alexandrov AV, Demchuk AM, Felberg RA, Christou I, Barber PA, et al.. (2000) High rate of complete recanalization and dramatic clinical recovery during tPA infusion when continuously monitored with 2-MHz transcranial Doppler monitoring. Stroke 31: 610–614. doi: 10.1161/01.str.31.3.610 PubMed DOI
Ma H, Campbell BC, Parsons MW, Churilov L, Levi CR, et al.. (2019) Thrombolysis Guided by Perfusion Imaging up to 9 Hours after Onset of Stroke. N Engl J Med 380: 1795–1803. doi: 10.1056/NEJMoa1813046 PubMed DOI
Aulicky P, Rabinstein A, Seet RC, Neumann J, Mikulik R (2013) Dosing of tissue plasminogen activator often differs from 0.9 mg/kg, but does not affect the outcome. J Stroke Cerebrovasc Dis 22: 1293–1297. doi: 10.1016/j.jstrokecerebrovasdis.2012.10.010 PubMed DOI
Anderson CS, Robinson T, Lindley RI, Arima H, Lavados PM, et al.. (2016) Low-dose versus standard-dose intravenous alteplase in acute ischemic stroke. N Engl J Med 374: 2313–2323. doi: 10.1056/NEJMoa1515510 PubMed DOI
Kimura K, Iguchi Y, Shibazaki K, Aoki J, Watanabe M, et al.. (2010) Early stroke treatment with IV t-PA associated with early recanalization. J Neurol Sci 295: 53–57. doi: 10.1016/j.jns.2010.05.012 PubMed DOI
Tsivgoulis G, Saqqur M, Sharma VK, Brunser A, Eggers J, et al.. (2020) Timing of Recanalization and Functional Recovery in Acute Ischemic Stroke. J Stroke 22: 130. doi: 10.5853/jos.2019.01648 PubMed DOI PMC
Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, et al.. (2014) Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 384: 1929–1935. doi: 10.1016/S0140-6736(14)60584-5 PubMed DOI PMC
Ruff IM, Jindal JA (2015) Use of Heparin in Acute Ischemic Stroke: Is There Still a Role? Curr Atheroscleros Rep 17: 51. doi: 10.1007/s11883-015-0528-3 PubMed DOI
Mikulik R, Wahlgren N (2015) Treatment of acute stroke: an update. J Intern Med 278: 145–165. doi: 10.1111/joim.12387 PubMed DOI
Thalerová S, Pešková M, Kittová P, Gulati S, Víteček J, et al.. (2021) Effect of Apixaban Pretreatment on Alteplase-Induced Thrombolysis: An In Vitro Study. Front Pharmacol: 2449. doi: 10.3389/fphar.2021.740930 PubMed DOI PMC
Acheampong P, Ford GA (2012) Pharmacokinetics of alteplase in the treatment of ischaemic stroke. Expert Opin Drug Metab Toxicol 8: 271–281. doi: 10.1517/17425255.2012.652615 PubMed DOI
Hirsh J, Anand SS, Halperin JL, Fuster V (2001) Guide to anticoagulant therapy: Heparin: a statement for healthcare professionals from the American Heart Association. Circulation 103: 2994–3018. doi: 10.1161/01.cir.103.24.2994 PubMed DOI
Sutton JT, Ivancevich NM, Perrin SR, Vela DC, Holland CK (2013) Clot retraction affects the extent of ultrasound-enhanced thrombolysis in an ex vivo porcine thrombosis model. Ultrasound Med Biol 39: 813–824. doi: 10.1016/j.ultrasmedbio.2012.12.008 PubMed DOI PMC
Mercado-Shekhar KP, Kleven RT, Rivera HA, Lewis R, Karani KB, et al.. (2018) Effect of clot stiffness on recombinant tissue plasminogen activator lytic susceptibility in vitro. Ultrasound Med Biol 44: 2710–2727. doi: 10.1016/j.ultrasmedbio.2018.08.005 PubMed DOI PMC
Bajd F, Serša I (2012) A concept of thrombolysis as a corrosion-erosion process verified by optical microscopy. Microcirculation 19: 632–641. doi: 10.1111/j.1549-8719.2012.00198.x PubMed DOI
Bajd F, Vidmar J, Blinc A, Sersa I (2010) Microscopic clot fragment evidence of biochemo-mechanical degradation effects in thrombolysis. Thromb Res 126: 137–143. doi: 10.1016/j.thromres.2010.04.012 PubMed DOI
Diamond SL (1999) Engineering design of optimal strategies for blood clot dissolution. Annu Rev Biomed Eng 1: 427–462. doi: 10.1146/annurev.bioeng.1.1.427 PubMed DOI
Wu JH, Diamond SL (1995) Tissue plasminogen activator (tPA) inhibits plasmin degradation of fibrin. A mechanism that slows tPA-mediated fibrinolysis but does not require alpha 2-antiplasmin or leakage of intrinsic plasminogen. J Clin Invest 95: 2483–2490. doi: 10.1172/JCI117949 PubMed DOI PMC
Musselman DR, Tate DA, Oberhardt BJ, Abruzzini AF, Blauwet MB, et al.. (1994) Differences in clot lysis among patients demonstrated in vitro with three thrombolytic agents (tissue-type plasminogen activator, streptokinase and urokinase). The American journal of cardiology 73: 544–549. doi: 10.1016/0002-9149(94)90330-1 PubMed DOI
Torr SR, Nachowiak DA, Fujii S, Sobel BE (1992) “Plasminogen steal” and clot lysis. J Am Coll Cardiol 19: 1085–1090. doi: 10.1016/0735-1097(92)90300-c PubMed DOI
Zhou Y, Murugappan SK, Sharma VK (2014) Effect of clot aging and cholesterol content on ultrasound-assisted thrombolysis. Translational stroke research 5: 627–634. doi: 10.1007/s12975-014-0332-3 PubMed DOI
Dosne A, Bendetowicz A, Kher A, Samama M (1988) Marked potentiation of the plasminogenolytic activitiy of pro-urokinase by unfractionated heparin and a low molecular-weight heparin. Thromb Res 51: 627–630. PubMed
Andrade-Gordon P, Strickland S (1986) Interaction of heparin with plasminogen activators and plasminogen: effects on the activation of plasminogen. Biochemistry 25: 4033–4040. doi: 10.1021/bi00362a007 PubMed DOI
Paques E-P, Stӧhr H-A, Heimburger N (1986) Study on the mechanism of action of heparin and related substances on the fibrinolytic system: Relationsship between plasminogen activators and heparin. Thromb Res 42: 797–807. doi: 10.1016/0049-3848(86)90116-7 PubMed DOI
Tamao Y, Yamamoto T, Kikumoto R, Hara H, Itoh J, et al.. (1986) Effect of a selective thrombin inhibitor MCI-9038 on fibrinolysis in vitro and in vivo. Thrombosis and haemostasis 56: 028–034. PubMed
Del Zoppo GJ, Higashida RT, Furlan AJ, Pessin MS, Rowley HA, et al.. (1998) PROACT: a phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. Stroke 29: 4–11. PubMed
Liebeskind DS, Sanossian N, Yong WH, Starkman S, Tsang MP, et al.. (2011) CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke 42: 1237–1243. doi: 10.1161/STROKEAHA.110.605576 PubMed DOI PMC
Mehta BP, Nogueira RG (2012) Should clot composition affect choice of endovascular therapy? Neurology 79: S63–7. doi: 10.1212/WNL.0b013e3182695859 PubMed DOI
Prasad S, Kashyap RS, Deopujari JY, Purohit HJ, Taori GM, et al.. (2006) Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thromb J 4: 1–4. PubMed PMC
Kim YD, Nam HS, Kim SH, Kim EY, Song D, et al.. (2015) Time-dependent thrombus resolution after tissue-type plasminogen activator in patients with stroke and mice. Stroke 46: 1877–1882. doi: 10.1161/STROKEAHA.114.008247 PubMed DOI
Datta S, Coussios C-C, Ammi AY, Mast TD, de Courten-Myers GM, et al.. (2008) Ultrasound-enhanced thrombolysis using Definity as a cavitation nucleation agent. Ultrasound Med Biol 34: 1421–1433. doi: 10.1016/j.ultrasmedbio.2008.01.016 PubMed DOI PMC
Nikitin D, Choi S, Mican J, Toul M, Ryu W-S, et al.. (2021) Development and Testing of Thrombolytics in Stroke. J Stroke 23: 12. doi: 10.5853/jos.2020.03349 PubMed DOI PMC
Zangerle A, Kiechl S, Spiegel M, Furtner M, Knoflach M, et al.. (2007) Recanalization after thrombolysis in stroke patients: predictors and prognostic implications. Neurology 68: 39–44. doi: 10.1212/01.wnl.0000250341.38014.d2 PubMed DOI
Computer-aided engineering of staphylokinase toward enhanced affinity and selectivity for plasmin