Most cited article - PubMed ID 31254167
Interoperable chemical structure search service
SUMMARY: The Integrated Database of Small Molecules (IDSM) integrates data from small-molecule datasets, making them accessible through the SPARQL query language. Its unique feature is the ability to search for compounds through SPARQL based on their molecular structure. We extended IDSM to enable mass spectra databases to be integrated and searched for based on mass spectrum similarity. As sources of mass spectra, we employed the MassBank of North America database and the In Silico Spectral Database of natural products. AVAILABILITY AND IMPLEMENTATION: The extension is an integral part of IDSM, which is available at https://idsm.elixir-czech.cz. The manual and usage examples are available at https://idsm.elixir-czech.cz/docs/ms. The source codes of all IDSM parts are available under open-source licences at https://github.com/idsm-src.
- MeSH
- Databases, Chemical * MeSH
- Mass Spectrometry * methods MeSH
- Software * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Contemporary bioinformatic and chemoinformatic capabilities hold promise to reshape knowledge management, analysis and interpretation of data in natural products research. Currently, reliance on a disparate set of non-standardized, insular, and specialized databases presents a series of challenges for data access, both within the discipline and for integration and interoperability between related fields. The fundamental elements of exchange are referenced structure-organism pairs that establish relationships between distinct molecular structures and the living organisms from which they were identified. Consolidating and sharing such information via an open platform has strong transformative potential for natural products research and beyond. This is the ultimate goal of the newly established LOTUS initiative, which has now completed the first steps toward the harmonization, curation, validation and open dissemination of 750,000+ referenced structure-organism pairs. LOTUS data is hosted on Wikidata and regularly mirrored on https://lotus.naturalproducts.net. Data sharing within the Wikidata framework broadens data access and interoperability, opening new possibilities for community curation and evolving publication models. Furthermore, embedding LOTUS data into the vast Wikidata knowledge graph will facilitate new biological and chemical insights. The LOTUS initiative represents an important advancement in the design and deployment of a comprehensive and collaborative natural products knowledge base.
- Keywords
- LOTUS Initiative, Wikidata, computational biology, ecology, knowledge graph, linked data, natural products, open science, systems biology,
- MeSH
- Biological Products * MeSH
- Databases, Factual MeSH
- Knowledge Management * MeSH
- Computational Biology MeSH
- Knowledge MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Biological Products * MeSH
The Resource Description Framework (RDF), together with well-defined ontologies, significantly increases data interoperability and usability. The SPARQL query language was introduced to retrieve requested RDF data and to explore links between them. Among other useful features, SPARQL supports federated queries that combine multiple independent data source endpoints. This allows users to obtain insights that are not possible using only a single data source. Owing to all of these useful features, many biological and chemical databases present their data in RDF, and support SPARQL querying. In our project, we primary focused on PubChem, ChEMBL and ChEBI small-molecule datasets. These datasets are already being exported to RDF by their creators. However, none of them has an official and currently supported SPARQL endpoint. This omission makes it difficult to construct complex or federated queries that could access all of the datasets, thus underutilising the main advantage of the availability of RDF data. Our goal is to address this gap by integrating the datasets into one database called the Integrated Database of Small Molecules (IDSM) that will be accessible through a SPARQL endpoint. Beyond that, we will also focus on increasing mutual interoperability of the datasets. To realise the endpoint, we decided to implement an in-house developed SPARQL engine based on the PostgreSQL relational database for data storage. In our approach, data are stored in the traditional relational form, and the SPARQL engine translates incoming SPARQL queries into equivalent SQL queries. An important feature of the engine is that it optimises the resulting SQL queries. Together with optimisations performed by PostgreSQL, this allows efficient evaluations of SPARQL queries. The endpoint provides not only querying in the dataset, but also the compound substructure and similarity search supported by our Sachem project. Although the endpoint is accessible from an internet browser, it is mainly intended to be used for programmatic access by other services, for example as a part of federated queries. For regular users, we offer a rich web application called ChemWebRDF using the endpoint. The application is publicly available at https://idsm.elixir-czech.cz/chemweb/ .
- Keywords
- Resource Descriptor Framework, SPARQL, Small-molecule datasets,
- Publication type
- Journal Article MeSH