Most cited article - PubMed ID 31403248
Sodium Naphthalene-2,6-dicarboxylate: An Anode for Sodium Batteries
Electrochemical energy storage (EES) devices are gaining ever greater prominence in the quest for global energy security. With increasing applications and widening scope, rechargeable battery technology is gradually finding avenues for more abundant and sustainable systems such as Na-ion (NIB) and K-ion batteries (KIB). Development of suitable electrode materials lies at the core of this transition. Organic redox-active molecules are attractive candidates as negative electrode materials owing to their low redox potentials and the fact that they can be obtained from biomass. Also, the rich structural diversity allows integration into several solid-state polymeric materials. Research in this domain is increasingly focused on deploying molecular engineering to address specific electrochemical limitations that hamper competition with rival materials. This Minireview aims to summarize the advances in both the electrochemical properties and the materials development of organic anode materials.
- Keywords
- anode, battery, organic electrode, potassium-ion, sodium-ion,
- Publication type
- Journal Article MeSH
- Review MeSH
Hierarchical carbon-rich materials have shown immense potential for various electrochemical applications. Metal-organic frameworks (MOFs) are well suited precursors for obtaining such templated carbon matrices. Usually these conversions are carried out by energy intensive processes and lead to the presence of toxic transition metal residues. Herein, we demonstrate the green, scalable, microwave-assisted synthesis of a three-dimensional s-block metal based MOF and its efficient transformation into a carbonaceous material. The MOF-derived solid functions as a negative electrode for lithium-ion batteries having moderate low-rate capacities and cycling stability.
- Publication type
- Journal Article MeSH