Nejvíce citovaný článek - PubMed ID 31425589
Spatial heterogeneity of belowground microbial communities linked to peatland microhabitats with different plant dominants
Despite covering <5% of Earth's terrestrial area, peatlands are crucial for global carbon storage and are hot spots of methane cycling. This study examined the dynamics of aerobic and anaerobic methane oxidation in two undisturbed peatlands: a fen and a spruce swamp forest. Using microcosm incubations, we investigated the effect of ammonium addition, at a level similar to current N pollution processes, on aerobic methane oxidation. Our findings revealed higher methane consumption rates in fen compared to swamp peat, but no effect of ammonium amendment on methane consumption was found. Members of Methylocystis and Methylocella were the predominant methanotrophs in both peatlands. Furthermore, we explored the role of ferric iron and sulfate as electron acceptors for the anaerobic oxidation of methane (AOM). AOM occurred without the addition of an external electron acceptor in the fen, but not in the swamp peat. AOM was stimulated by sulfate and ferric iron addition in the swamp peat and inhibited by ferric iron in the fen. Our findings suggest that aerobic methane oxidizers are not N-limited in these peatlands and that there is an intrinsic potential for AOM in these environments, partially facilitated by ferric iron and sulfate acting as electron acceptors.
- Klíčová slova
- ammonium, electron acceptors, greenhouse gas emissions, methanotrophic bacteria,
- MeSH
- aerobióza MeSH
- amoniové sloučeniny metabolismus MeSH
- anaerobióza MeSH
- methan * metabolismus MeSH
- Methylocystaceae metabolismus genetika MeSH
- mokřady * MeSH
- oxidace-redukce * MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- sírany metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amoniové sloučeniny MeSH
- methan * MeSH
- půda MeSH
- sírany MeSH
Nutrient addition may change soil microbial community structure, but soil microbes must simultaneously contend with other, interacting factors. We studied the effect of soil type (peat, mineral), water level (low, high), and nutrient addition (unfertilized, fertilized) on wet grassland soil microbial community structure in both vegetated and un-vegetated soils after five years of treatment application in a mesocosm, using Illumina sequencing of the bacterial V4 region of the small ribosomal sub-units. Soil type, water level, and plant presence significantly affected the soil microbial structure, both singly and interactively. Nutrient addition did not directly impact microbiome structure, but acted indirectly by increasing plant biomass. The abundance of possible plant growth promoting bacteria and heterotrophic bacteria indicates the importance of bacteria that promote plant growth. Based on our results, a drier and warmer future would result in nutrient-richer conditions and changes to microbial community structure and total microbial biomass and/or abundances, with wet grasslands likely switching from areas acting as C sinks to C sources.
- Klíčová slova
- Carex acuta, context dependence, r/K strategies, soil microbial community structure, wet grasslands,
- MeSH
- Bacteria MeSH
- biomasa MeSH
- mikrobiota * MeSH
- pastviny * MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- rostliny mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda MeSH
In peatlands, decomposition of organic matter is limited by harsh environmental conditions and low decomposability of the plant material. Shifting vegetation composition from Sphagnum towards vascular plants is expected in response to climate change, which will lead to increased root exudate flux to the soil and stimulation of microbial growth and activity. We aimed to evaluate the effect of root exudates on the decomposition of recalcitrant dissolved organic carbon (DOC) and to identify microorganisms involved in this process. The exudation was mimicked by an addition of a mixture of 13C labelled compounds into the recalcitrant DOC in two realistic levels; 2% and 5% of total DOC and peatland porewater with added root exudates was incubated under controlled conditions in the lab. The early stage of incubation was characterized by a relative increase of r-strategic bacteria mainly from Gammaproteobacteria and Bacteriodetes phyla within the microbial community and their preferential use of the added compounds. At the later stage, Alphaproteobacteria and Acidobacteria members were the dominating phyla, which metabolized both the transformed 13C compounds and the recalcitrant DOC. Only higher exudate input (5% of total DOC) stimulated decomposition of recalcitrant DOC compared to non-amended control. The most important taxa with a potential to decompose complex DOC compounds were identified as: Mucilaginibacter (Bacteriodetes), Burkholderia and Pseudomonas (Gammaproteobacteria) among r-strategists and Bryocella and Candidatus Solibacter (Acidobacteria) among K-strategists. We conclude that increased root exudate inputs and their increasing C/N ratio stimulate growth and degradation potential of both r-strategic and K-strategic bacteria, which make the system more dynamic and may accelerate decomposition of peatland recalcitrant DOC.
- MeSH
- Bacteria metabolismus MeSH
- klimatické změny MeSH
- mikrobiota MeSH
- půdní mikrobiologie MeSH
- rašeliníky metabolismus MeSH
- rozpuštěná organická hmota metabolismus MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rozpuštěná organická hmota MeSH
- uhlík MeSH