Nejvíce citovaný článek - PubMed ID 31654074
Cyclosporine A promotes the therapeutic effect of mesenchymal stem cells on transplantation reaction
Background. The treatment of middle ear cholesteatoma requires surgical treatment and the reconstruction of the temporal bone, which represents an ongoing problem. Otologists have focused on the research of materials allowing an airy middle ear and the preservation of hearing function to reconstruct the temporal bone. Methods. This study evaluated the effect of cyclosporin A (CsA) and a combined biomaterial in the healing process of postoperative temporal bone defects in an animal model. Cultured human Bone Marrow Mesenchymal Stromal Cells (hBM-MSCs) were mixed with hydroxyapatite (Cem-Ostetic®), and subsequently applied as a bone substitute after middle ear surgery, showing that the therapeutic potential of hBM-MSCs associated with bone regeneration and replacement is directly influenced by CsA, confirming that it promotes the survival of MSCs in vivo. Results. The therapeutic efficacy of the combination of MSCs with CsA is greater than the sole application of MSCs in a hydroxyapatite carrier. Conclusion. The reconstruction of a temporal bone defect using hBM-MSCs requires an immunosuppressant to improve the results of treatment.
- Klíčová slova
- cholesteatoma, cyclosporin A, mesenchymal stem cells, osteogenesis, temporal bone,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Immunosuppressive cell-based therapy is a recent strategy for controlling Graft-versus-Host Disease (GvHD). Such cells ought to maintain their suppressive function in inflammatory conditions and in the presence of immunosuppressive agents currently used in allogeneic hematopoietic cell transplantation (allo-HCT). Moreover, these therapies should not diminish the benefits of allo-HCT, the Graft-versus-Leukemia (GvL) effect. We have previously reported on a novel subset of human monocyte-derived suppressor cells (HuMoSC) as a prospective approach for controlling GvHD.Objective. UNLABELLED: The objective of this study was to explore the therapeutic relevance of the HuMoSC in clinical conditions. METHODS: Immune regulatory functions of HuMoSC were assessed in inflammatory conditions and in the presence of immunosuppressants. The therapeutic efficiency of the association of HuMoSC with immunosuppressants was evaluated in an experimental model of GvHD induced by human PBMC in NOD/SCID/IL2-Rγc-/- (NSG) mice. UNLABELLED: Interestingly, the inhibitory functions of HuMoSC against T lymphocytes and their ability to polarize Treg are preserved, in vitro, in inflammatory environments and are not affected by immunosuppressive agents. In vivo, the association of HuMoSC-based treatment with an immunosuppressive drug showed a synergistic effect for controlling GvHD. Furthermore, HuMoSC control GvHD while preserving GvL effect in a xeno-GvHD conditioned mouse model with cell neoplasm (CAL-1). HuMoSC are generated according to good manufacturing practices (GMP) and we demonstrated that these cells tolerate long-term preservation with unaltered phenotype and function.Conclusion. UNLABELLED: HuMoSC-based therapy represents a promising approach for controlling GvHD and could be quickly implemented in clinical practice.
- Klíčová slova
- Human monocyte-derived suppressor cells, graft-versus-host disease, graft-versus-leukemia effect, immunosuppressive drugs, inflammation, regulatory T cells,
- MeSH
- leukemie * MeSH
- leukocyty mononukleární MeSH
- lidé MeSH
- monocyty MeSH
- myši inbrední NOD MeSH
- myši SCID MeSH
- myši MeSH
- nemoc štěpu proti hostiteli * prevence a kontrola MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH