Nejvíce citovaný článek - PubMed ID 31677446
Synthesis and biological evaluation of triterpenoid thiazoles derived from betulonic acid, dihydrobetulonic acid, and ursonic acid
The effects of two anticancer active copper(II) mixed-ligand complexes of the type [Cu(qui)(mphen)]Y·H2O, where Hqui = 2-phenyl-3-hydroxy- 1H-quinolin-4-one, mphen = bathophenanthroline, and Y = NO3 (complex 1) or BF4 (complex 2) on the activities of different isoenzymes of cytochrome P450 (CYP) have been evaluated. The screening revealed significant inhibitory effects of the complexes on CYP3A4/5 (IC50 values were 2.46 and 4.88 μM), CYP2C9 (IC50 values were 16.34 and 37.25 μM), and CYP2C19 (IC50 values were 61.21 and 77.07 μM). Further, the analysis of mechanisms of action uncovered a non-competitive type of inhibition for both the studied compounds. Consequent studies of pharmacokinetic properties proved good stability of both the complexes in phosphate buffer saline (>96% stability) and human plasma (>91% stability) after 2 h of incubation. Both compounds are moderately metabolised by human liver microsomes (<30% after 1 h of incubation), and over 90% of the complexes bind to plasma proteins. The obtained results showed the potential of complexes 1 and 2 to interact with major metabolic pathways of drugs and, as a consequence of this finding, their apparent incompatibility in combination therapy with most chemotherapeutic agents.
- Klíčová slova
- copper(II) complexes, cytochrome P450, isothermal titration calorimetry, quinolinonato derivatives,
- Publikační typ
- časopisecké články MeSH
Specific A3 adenosine receptor (A3AR) agonist, 2‑chloro‑N6‑(3‑iodobenzyl)‑5'‑N‑methylcarboxamidoadenosine (2‑Cl‑IB‑MECA), demonstrates anti‑proliferative effects on various types of tumor. In the present study, the cytotoxicity of 2‑Cl‑IB‑MECA was analyzed in a panel of tumor and non‑tumor cell lines and its anticancer mechanisms in JoPaca‑1 pancreatic and Hep‑3B hepatocellular carcinoma cell lines were also investigated. Initially, decreased tumor cell proliferation, cell accumulation in the G1 phase and inhibition of DNA and RNA synthesis was found. Furthermore, western blot analysis showed decreased protein expression level of β‑catenin, patched1 (Ptch1) and glioma‑associated oncogene homolog zinc finger protein 1 (Gli1), which are components of the Wnt/β‑catenin and Sonic hedgehog/Ptch/Gli transduction pathways. In concordance with these findings, the protein expression levels of cyclin D1 and c‑Myc were reduced. Using a luciferase assay, it was revealed for the first time a decrease in β‑catenin transcriptional activity, as an early event following 2‑Cl‑IB‑MECA treatment. In addition, the protein expression levels of multidrug resistance‑associated protein 1 and P‑glycoprotein (P‑gp) were reduced and the P‑gp xenobiotic efflux function was also reduced. Next, the enhancing effects of 2‑Cl‑IB‑MECA on the cytotoxicity of conventional chemotherapy was investigated. It was found that 2‑Cl‑IB‑MECA enhanced carboplatin and doxorubicin cytotoxic effects in the JoPaca‑1 and Hep‑3B cell lines, and a greater synergy was found in the highly tumorigenic JoPaca‑1 cell line. This provides a novel in vitro rationale for the utilization of 2‑Cl‑IB‑MECA in combination with chemotherapeutic agents, not only for hepatocellular carcinoma, but also for pancreatic cancer. Other currently used conventional chemotherapeutics, fluorouracil and gemcitabine, showed synergy only when combined with high doses of 2‑Cl‑IB‑MECA. Notably, experiments with A3AR‑specific antagonist, N‑[9‑Chloro‑2‑(2‑furanyl)(1,2,4)‑triazolo(1,5‑c)quinazolin‑5‑yl]benzene acetamide, revealed that 2‑Cl‑IB‑MECA had antitumor effects via both A3AR‑dependent and ‑independent pathways. In conclusion, the present study identified novel antitumor mechanisms of 2‑Cl‑IB‑MECA in pancreatic and hepatocellular carcinoma in vitro that further underscores the importance of A3AR agonists in cancer therapy.
- Klíčová slova
- 2‑Cl‑IB‑MECA, adenosine A3 receptor, chemosensitivity, hepatocellular carcinoma, multidrug resistance, pancreatic carcinoma,
- MeSH
- adenosin analogy a deriváty MeSH
- buněčné linie MeSH
- léková rezistence MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory jater * farmakoterapie MeSH
- nádory slinivky břišní * genetika MeSH
- proliferace buněk MeSH
- protein Gli1 genetika metabolismus MeSH
- proteiny hedgehog MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide MeSH Prohlížeč
- adenosin MeSH
- protein Gli1 MeSH
- proteiny hedgehog MeSH