Nejvíce citovaný článek - PubMed ID 31693280
SUMOylated SNF2PH promotes variant surface glycoprotein expression in bloodstream trypanosomes
The nuclear lamina supports many functions, including maintaining nuclear structure and gene expression control, and correct spatio-temporal assembly is vital to meet these activities. Recently, multiple lamina systems have been described that, despite independent evolutionary origins, share analogous functions. In trypanosomatids the two known lamina proteins, NUP-1 and NUP-2, have molecular masses of 450 and 170 kDa, respectively, which demands a distinct architecture from the ∼60 kDa lamin-based system of metazoa and other lineages. To uncover organizational principles for the trypanosome lamina we generated NUP-1 deletion mutants to identify domains and their arrangements responsible for oligomerization. We found that both the N- and C-termini act as interaction hubs, and that perturbation of these interactions impacts additional components of the lamina and nuclear envelope. Furthermore, the assembly of NUP-1 terminal domains suggests intrinsic organizational capacity. Remarkably, there is little impact on silencing of telomeric variant surface glycoprotein genes. We suggest that both terminal domains of NUP-1 have roles in assembling the trypanosome lamina and propose a novel architecture based on a hub-and-spoke configuration.
- Klíčová slova
- Heterochromatin, Lamina, Macromolecular assembly, Nuclear organization, Trypanosomatid,
- MeSH
- buněčné jádro MeSH
- jaderná lamina * genetika MeSH
- jaderný obal MeSH
- laminy genetika MeSH
- telomery MeSH
- Trypanosoma * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- laminy MeSH