Nejvíce citovaný článek - PubMed ID 31751767
Enzymatic activities in the digestive tract of spirostreptid and spirobolid millipedes (Diplopoda: Spirostreptida and Spirobolida)
In this paper, the growth requirements, fermentation pattern, and hydrolytic enzymatic activities of anaerobic ciliates collected from the hindgut of the African tropical millipede Archispirostreptus gigas are described. Single-cell molecular analysis showed that ciliates from the millipede hindgut could be assigned to the Nyctotherus velox and a new species named N. archispirostreptae n. sp. The ciliate N. velox can grow in vitro with unspecified prokaryotic populations and various plant polysaccharides (rice starch-RS, xylan, crystalline cellulose20-CC, carboxymethylcellulose-CMC, and inulin) or without polysaccharides (NoPOS) in complex reduced medium with soluble supplements (peptone, glucose, and vitamins). Specific catalytic activity (nkat/g of protein) of α amylase of 300, xylanase of 290, carboxymethylcellulase of 190, and inulinase of 170 was present in the crude protein extract of N. velox. The highest in vitro dry matter digestibility was observed in RS and inulin after 96 h of fermentation. The highest methane concentration was observed in xylan and inulin substrates. The highest short-chain fatty acid concentration was observed in RS, inulin, and xylan. In contrast, the highest ammonia concentration was observed in NoPOS, CMC, and CC. The results indicate that starch is the preferred substrate of the N. velox. Hydrolytic enzyme activities of N. velox showed that the ciliates contribute to the fermentation of plant polysaccharides in the gut of millipedes.
- Klíčová slova
- Nyctotherus, ciliates, enzymatic activities, hindgut protozoa, in vitro growth, polysaccharide fermentation, tropical millipedes,
- Publikační typ
- časopisecké články MeSH
Invertebrate-microbial associations are widespread in the biosphere and are often related to the function of novel genes, fitness advantages, and even speciation events. Despite ~ 13,000 species of millipedes identified across the world, millipedes and their gut microbiota are markedly understudied compared to other arthropods. Exploring the contribution of individual host-associated microbes is often challenging as many are uncultivable. In this study, we conducted metatranscriptomic profiling of different body segments of a millipede at the holobiont level. This is the first reported transcriptome assembly of a tropical millipede Telodeinopus aoutii (Demange, 1971), as well as the first study on any Myriapoda holobiont. High-throughput RNA sequencing revealed that Telodeinopus aoutii contained > 90% of the core Arthropoda genes. Proteobacteria, Bacteroidetes, Firmicutes, and Euryarchaeota represented dominant and functionally active phyla in the millipede gut, among which 97% of Bacteroidetes and 98% of Firmicutes were present exclusively in the hindgut. A total of 37,831 predicted protein-coding genes of millipede holobiont belonged to six enzyme classes. Around 35% of these proteins were produced by microbiota in the hindgut and 21% by the host in the midgut. Our results indicated that although major metabolic pathways operate at the holobiont level, the involvement of some host and microbial genes are mutually exclusive and microbes predominantly contribute to essential amino acid biosynthesis, short-chain fatty acid metabolism, and fermentation.
- MeSH
- Bacteroidetes MeSH
- členovci * genetika MeSH
- esenciální aminokyseliny MeSH
- kyseliny mastné těkavé MeSH
- střevní mikroflóra * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- esenciální aminokyseliny MeSH
- kyseliny mastné těkavé MeSH