Nejvíce citovaný článek - PubMed ID 31901449
Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018)
Multiple Sclerosis (MS) management in individuals aged 55 and above presents unique challenges due to the complex interaction between aging, comorbidities, immunosenescence, and MS pathophysiology. This comprehensive review explores the evolving landscape of MS in older adults, including the increased incidence and prevalence of MS in this age group, the shift in disease phenotypes from relapsing-remitting to progressive forms, and the presence of multimorbidity and polypharmacy. We aim to provide an updated review of the available evidence of disease-modifying treatments (DMTs) in older patients, including the efficacy and safety of existing therapies, emerging treatments such as Bruton tyrosine kinase (BTKs) inhibitors and those targeting remyelination and neuroprotection, and the critical decisions surrounding the initiation, de-escalation, and discontinuation of DMTs. Non-pharmacologic approaches, including physical therapy, neuromodulation therapies, cognitive rehabilitation, and psychotherapy, are also examined for their role in holistic care. The importance of MS Care Units and advance care planning are explored as a cornerstone in providing patient-centric care, ensuring alignment with patient preferences in the disease trajectory. Finally, the review emphasizes the need for personalized management and continuous monitoring of MS patients, alongside advocating for inclusive study designs in clinical research to improve the management of this growing patient demographic.
- Klíčová slova
- aging, disease-modifying treatments, management, multiple sclerosis, symptomatic treatment,
- MeSH
- komorbidita MeSH
- lidé středního věku MeSH
- lidé MeSH
- management nemoci MeSH
- roztroušená skleróza * terapie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stárnutí imunologie MeSH
- věkové faktory MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
INTRODUCTION: Tinnitus is an intrusive and chronic illness affecting a significant portion of the population, decreasing affected individuals' quality of life and socioeconomic functioning. Transcranial Direct Current Stimulation (tDCS) is a non-invasive neuromodulatory method utilizing weak electrical currents to elicit short and long-term central nervous system changes. Several studies have proven its effect on tinnitus. We aimed to broaden the knowledge and provide data on the effect and its retention. METHODS: In the randomized, double-blinded, sham-controlled trial, 39 patients (active n = 19, sham n = 20) underwent bifrontal tDCS (anode over right dorsolateral prefrontal cortex (DLPFC), cathode left DLPFC, current of 1.5 mA, 20 min, 6 sessions in 2 weeks). Tinnitus Functional Index (TFI), Iowa Tinnitus Handicap Questionnaire (ITHQ), Beck Anxiety Inventory (BAI), Zung Self-Rating Depression Scale (SDS), and WHO-Quality of Life-BREF were employed in 4 evaluation points, including the follow-ups of 6 weeks and 6 months. RESULTS: We reached a delayed, significant long-term improvement (p < 0.05) in auditory difficulties associated with tinnitus and noticed it even after 6 months compared to placebo. We also reached a short-term, negative effect in the psychological domain of WHO-Quality of Life-BREF (p < 0.05). Not all subdomains of TFI and ITHQ reached statistical significance during the data analysis, even though specific positive trends were noticed. CONCLUSION: We proved partial, positive, long-term effects of tDCS on tinnitus and short-term, negative, transient effect on a specific aspect of the general quality of life. We expanded upon the results of previous trials and provided data concerning the longevity and the precise effect of multiple sessions, bifrontal DLPFC tDCS. Our sample size (n = 39) was limited, which might have contributed to the lesser statistical power of the analyzed items. CLINICAL TRIAL REGISTRATION: [www.ClinicalTrials.gov], identifier [NCT05437185].
- Klíčová slova
- bifrontal tDCS, dorsolateral prefrontal cortex, neurostimulation, non-invasive, protocol optimization, tDCS, tinnitus, transcranial direct current stimulation (tDCS),
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Schizophrenia is a severe and often difficult to treat psychiatric illness. In many patients, negative symptoms dominate the clinical picture. Meta-analysis has suggested moderate, but significant effects of high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) on these symptoms. For treatment of depression a much shorter protocol - intermittent theta burst stimulation (iTBS) - has shown to be non-inferior to conventional high-frequency rTMS. This randomized, sham-controlled, rater-blinded clinical trial assesses the effects of conventional HF-rTMS as well as of iTBS of the left dorsolateral prefrontal cortex in comparison with sham. METHODS: The study will be conducted at two psychiatric university hospitals in Germany and at two in the Czech Republic. Assuming an effect size of 0.64 to be detected with a power of 80%, the calculated sample size is 90 patients. Primary outcome will be the difference in the Scale for the Assessment of Negative Symptoms (SANS) score between each active arm and the sham arm at end of treatment.In addition, the trial investigates effects on depressive symptoms, cognitive performance and cigarette smoking. Recording magnetic resonance imaging (MRI) and electroencephalography (EEG) data will serve to assess whether treatment success can be predicted by neural markers and is related to specific neurobiological changes. DISCUSSION: This is a clinical trial directly comparing 10 Hz-rTMS and iTBS in a sham-controlled manner in treating negative symptoms of schizophrenia. If successful, this would present an interesting treatment option for a chronic and severe condition that can be applied at most psychiatric hospitals and only takes up a few minutes per day. TRIAL REGISTRATION NUMBER: This trial has been registered at clinicaltrials.gov, Identifier: NCT04318977. DATA DISSEMINATION: Results from the trial shall be published in peer-reviewed journals and presented at meetings and conferences.
- Klíčová slova
- Negative symptoms, Neuromodulation, Schizophrenia, TMS, Transcranial magnetic stimulation,
- Publikační typ
- časopisecké články MeSH
The vertex has been used as a suitable control stimulation site in repetitive transcranial magnetic stimulation studies. The objectives of this study are (1) to assess cognitive performance (CP) after theta burst stimulation (TBS); (2) to evaluate whether clinically relevant cortical areas might be reached by vertex stimulation and how that might influence CP. Twenty young healthy subjects performed a cognitive task prior to and immediately after intermittent TBS (iTBS) and continuous TBS (cTBS) of two active cortical stimulation sites and the vertex. We used the Wilcoxon signed-rank test to compare the pre- and post-stimulation reaction times (RTs) and a mixed ANOVA analysis to evaluate the effect of the stimulation on changes in RTs. A three-dimensional finite-element model (FEM) was used to calculate the vertex TBS-induced electrical field (E-field) in the adjacent regions of interest (ROIs). Correlation analyses were performed between E-fields in the ROIs and cognitive outcomes. We found a significant effect only of the stimulation time factor (F (1,12) = 65.37, p < 0.001) on RT shortening, with no superiority of the active site stimulation compared to the vertex stimulation. In 73.5% of vertex TBS sessions, a significant E-field was induced in at least one ROI. We found a negative association between the magnitude of the iTBS-induced E-fields and RT changes (R = - 0.54, p = 0.04). TBS protocols may lead to changes in CP when applied over the craniometrically targeted vertex. We therefore suggest not using a conventional approach as a vertex targeting method.
- Klíčová slova
- Cognitive, Control condition, SimNIBS, Transcranial magnetic stimulation, Vertex stimulation, rTMS,
- MeSH
- hlava * MeSH
- lidé MeSH
- reakční čas MeSH
- theta rytmus EEG MeSH
- transkraniální magnetická stimulace * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: There are no head-to-head studies comparing the antidepressant effect of transcranial direct current stimulation (tDCS) with repetitive transcranial magnetic stimulation (rTMS). This pooled analysis compared indirectly the antidepressant efficacy and acceptability of rTMS, tDCS, and the antidepressant venlafaxine (VNF) extended-release. METHODS: The analysis (n=117, both patients with treatment-resistant depression (TRD) and non-TRD were included) examined pooled data from two 4-week, single-centered, two-armed, double-blind, randomized studies (EUDRACT n. 2005-000826-22 and EUDRACT n. 2015-001639-19). The antidepressant efficacy of right-sided low-frequency rTMS (n=29) vs VNF (n=31) and left-sided anodal tDCS (n=29) vs VNF (n=28) was evaluated. The primary outcome was a change in the Montgomery-Åsberg Depression Rating Scale (MADRS) score from baseline to the treatment endpoint at week 4. The response was defined as a ≥50% reduction in the MADRS score and remission as the MADRS score ≤10 points, both were calculated for the primary treatment endpoint at week 4. RESULTS: Mean change in total MADRS scores from baseline to week 4 was 7.0 (95% CI, 4.8-9.1) points in the rTMS group, 7.6 (95% CI, 5.5-9.8) in the tDCS group, and 8.9 (95% CI, 7.4-10.4) among patients in the VNF group, a non-significant difference (F(2111)=0.62, p=0.54). Similarly, neither the response rates nor remission rates for rTMS (response 31%; remission 17%), tDCS (24%, 17%), or VNF (41%; 27%) significantly differed among treatment groups (χ 2=2.59, p=0.28; χ 2=1.66, p=0.44). Twenty patients (17%) dropped out of the studies in a similar proportion across groups (rTMS 3/29, tDCS 6/29, VNF 11/59, χ 2=1.41, p=0.52). CONCLUSION: Our current analysis found a comparable efficacy and acceptability in all three treatment modalities (rTMS, tDCS, and VNF) and clinical relevance for the acute treatment of major depressive disorder.
- Klíčová slova
- MDD, efficacy, major depressive disorder, rTMS, repetitive transcranial magnetic stimulation, tDCS, transcranial direct-current stimulation, treatment, venlafaxine,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The global COVID-19 pandemic has affected the economy, daily life, and mental/physical health. The latter includes the use of electroencephalography (EEG) in clinical practice and research. We report a survey of the impact of COVID-19 on the use of clinical EEG in practice and research in several countries, and the recommendations of an international panel of experts for the safe application of EEG during and after this pandemic. METHODS: Fifteen clinicians from 8 different countries and 25 researchers from 13 different countries reported the impact of COVID-19 on their EEG activities, the procedures implemented in response to the COVID-19 pandemic, and precautions planned or already implemented during the reopening of EEG activities. RESULTS: Of the 15 clinical centers responding, 11 reported a total stoppage of all EEG activities, while 4 reduced the number of tests per day. In research settings, all 25 laboratories reported a complete stoppage of activity, with 7 laboratories reopening to some extent since initial closure. In both settings, recommended precautions for restarting or continuing EEG recording included strict hygienic rules, social distance, and assessment for infection symptoms among staff and patients/participants. CONCLUSIONS: The COVID-19 pandemic interfered with the use of EEG recordings in clinical practice and even more in clinical research. We suggest updated best practices to allow safe EEG recordings in both research and clinical settings. The continued use of EEG is important in those with psychiatric diseases, particularly in times of social alarm such as the COVID-19 pandemic.
- Klíčová slova
- COVID-19, event-related oscillations (EROs), event-related potentials (ERPs), psychiatry, quantitative EEG (qEEG), resting state electroencephalography (rsEEG),
- MeSH
- COVID-19 patofyziologie virologie MeSH
- duševní poruchy patofyziologie MeSH
- elektroencefalografie * škodlivé účinky metody MeSH
- konsensus * MeSH
- lidé MeSH
- mapování mozku metody MeSH
- mozek patofyziologie MeSH
- SARS-CoV-2 patogenita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- úvodníky MeSH
Over the past decade, theta-burst stimulation (TBS) has become a focus of interest in neurostimulatory research. Compared to conventional repetitive transcranial magnetic stimulation (rTMS), TBS produces more robust changes in cortical excitability (CE). There is also some evidence of an analgesic effect of the method. Previously published studies have suggested that different TBS parameters elicit opposite effects of TBS on CE. While intermittent TBS (iTBS) facilitates CE, continuous TBS (cTBS) attenuates it. However, prolonged TBS (pTBS) with twice the number of stimuli produces the opposite effect. In a double-blind, placebo-controlled, cross-over study with healthy subjects (n = 24), we investigated the effects of various pTBS (cTBS, iTBS, and placebo TBS) over the right motor cortex on CE and pain perception. Changes in resting motor thresholds (RMTs) and absolute motor-evoked potential (MEP) amplitudes were assessed before and at two time-points (0-5 min; 40-45 min) after pTBS. Tactile and thermal pain thresholds were measured before and 5 min after application. Compared to the placebo, prolonged cTBS (pcTBS) transiently increased MEP amplitudes, while no significant changes were found after prolonged iTBS. However, the facilitation of CE after pcTBS did not induce a parallel analgesic effect. We confirmed that pcTBS with twice the duration converts the conventional inhibitory effect into a facilitatory one. Despite the short-term boost of CE following pcTBS, a corresponding analgesic effect was not demonstrated. Therefore, the results indicate a more complex regulation of pain, which cannot be explained entirely by the modulation of excitability.
- Klíčová slova
- TBS, cortical excitability, motor evoked potentials, pain, perception, rTMS, theta-burst stimulation,
- Publikační typ
- časopisecké články MeSH