Most cited article - PubMed ID 32020274
Bilateral activation of glial cells and cellular distribution of the chemokine CCL2 and its receptor CCR2 in the trigeminal subnucleus caudalis of trigeminal neuropathic pain model
The cellular distribution and changes in CX3CL1/fractalkine and its receptor CX3CR1 protein levels in the trigeminal subnucleus caudalis (TSC) of rats with unilateral infraorbital nerve ligation (IONL) were investigated on postoperation days 1, 3, 7, and 14 (POD1, POD3, POD7, and POD14, respectively) and compared with those of sham-operated and naïve controls. Behavioral tests revealed a significant increase in tactile hypersensitivity bilaterally in the vibrissal pads of both sham- and IONL-operated animals from POD1 to POD7, with a trend towards normalization in sham controls at POD14. Image analysis revealed increased CX3CL1 immunofluorescence (IF) intensities bilaterally in the TSC neurons of both sham- and IONL-operated rats at all survival periods. Reactive astrocytes in the ipsilateral TSC also displayed CX3CL1-IF from POD3 to POD14. At POD1 and POD3, microglial cells showed high levels of CX3CR1-IF, which decreased by POD7 and POD14. Conversely, CX3CR1 was increased in TSC neurons and reactive astrocytes at POD7 and POD14, which coincided with high levels of CX3CL1-IF and ADAM17-IF. This indicates that CX3CL1/CX3CR1 may be involved in reciprocal signaling between TSC neurons and reactive astrocytes. The level of CatS-IF in microglial cells suggests that soluble CX3CL1 may be involved in neuron-microglial cell signaling at POD3 and POD7, while ADAM17 allows this release at all studied time points. These results indicate an extended CX3CL1/CX3CR1 signaling axis and its role in the crosstalk between TSC neurons and glial cells during the development of trigeminal neuropathic pain.
- Keywords
- chemokine receptors, chemokines, image analysis, immunohistochemistry, microglial cells, neurons, reactive astroglia,
- MeSH
- Astrocytes metabolism MeSH
- Chemokine CX3CL1 * metabolism MeSH
- CX3C Chemokine Receptor 1 * metabolism genetics MeSH
- Rats MeSH
- Microglia metabolism MeSH
- Trigeminal Neuralgia metabolism pathology MeSH
- Neuralgia metabolism pathology MeSH
- Neurons metabolism MeSH
- Rats, Sprague-Dawley MeSH
- Signal Transduction * MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chemokine CX3CL1 * MeSH
- CX3C Chemokine Receptor 1 * MeSH
- Cx3cl1 protein, rat MeSH Browser
- CX3CR1 protein, rat MeSH Browser