Most cited article - PubMed ID 32130216
Completing Linnaeus's inventory of the Swedish insect fauna: Only 5,000 species left?
Species richness is one of the fundamental metrics of biodiversity. Estimating species richness helps spotlight taxonomic groups that are particularly under-studied, such as the highly diverse Darwin wasps. The only available estimate of the number of Darwin wasps in the Afrotropics proposed almost 11,000 species, compared to the 2,322 recorded species. However, it relied exclusively on the ratio of morphospecies to described species in Henry Townes' personal collection. We provide an updated estimate of the Afrotropical Darwin wasp species, using empirical data from multiple sources, including the increase in species numbers following generic revisions, morphospecies sorting in natural history collections, and diversity patterns of better-studied insects (butterflies) for extrapolation. Our analyses suggest that our knowledge of Darwin wasps is highly incomplete, with only 13-22% of species known in the five most extensively studied countries in the Afrotropics. We estimate 9,206-15,577 species of Darwin wasps within the entire Afrotropics, with the highest concentration expected in the Equatorial Afrotropics and Madagascar. Due to data constraints, our approach tends to underestimate diversity at each step, rendering the upper estimate (15,577 species) more realistic. We highlight reasons contributing to the gap between recorded and estimated species richness, including logistical and financial factors, as well as post-colonial influences.
- MeSH
- Biodiversity * MeSH
- Wasps * classification physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Africa MeSH
Metazoan metabarcoding is emerging as an essential strategy for inventorying biodiversity, with diverse projects currently generating massive quantities of community-level data. The potential for integrating across such data sets offers new opportunities to better understand biodiversity and how it might respond to global change. However, large-scale syntheses may be compromised if metabarcoding workflows differ from each other. There are ongoing efforts to improve standardization for the reporting of inventory data. However, harmonization at the stage of generating metabarcode data has yet to be addressed. A modular framework for harmonized data generation offers a pathway to navigate the complex structure of terrestrial metazoan biodiversity. Here, through our collective expertise as practitioners, method developers, and researchers leading metabarcoding initiatives to inventory terrestrial biodiversity, we seek to initiate a harmonized framework for metabarcode data generation, with a terrestrial arthropod module. We develop an initial set of submodules covering the 5 main steps of metabarcode data generation: (i) sample acquisition; (ii) sample processing; (iii) DNA extraction; (iv) polymerase chain reaction amplification, library preparation, and sequencing; and (v) DNA sequence and metadata deposition, providing a backbone for a terrestrial arthropod module. To achieve this, we (i) identified key points for harmonization, (ii) reviewed the current state of the art, and (iii) distilled existing knowledge within submodules, thus promoting best practice by providing guidelines and recommendations to reduce the universe of methodological options. We advocate the adoption and further development of the terrestrial arthropod module. We further encourage the development of modules for other biodiversity fractions as an essential step toward large-scale biodiversity synthesis through harmonization.
- Keywords
- arthropods, biodiversity big data integration, biodiversity inventory, comparability, data generation, harmonization, metabarcoding, modular structure, reproducibility,
- MeSH
- Biodiversity MeSH
- Arthropods * genetics MeSH
- Longitudinal Studies MeSH
- DNA Barcoding, Taxonomic MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH