Nejvíce citovaný článek - PubMed ID 32147713
Pre-akinete formation in Zygnema sp. from polar habitats is associated with metabolite re-arrangement
Filamentous green algae of the genus Zygnema are an essential part of hydro-terrestrial ecosystems. Despite several studies on their resistance to natural stresses, little is known about the composition of their assemblages and the changes they undergo over time. Two sites at altitudes above 2200 m a.s.l. in the Austrian Alps were selected for a 2-year observation period and sampled five times. Molecular phylogenetic analysis of the 152 isolated strains of Zygnema sp. was performed based on the rbcL and trnG sequences. Seven genotypes were found at these sites during the samplings, but their proportion varied throughout the seasons. The site with a more stable water regime also had a more stable representation of genotypes, in contrast to the site with fluctuating water availability. The mats formed resistant pre-akinetes at the end of the season with reduced photosynthetic activity. Contrary to expectations, the mats were not exposed to extremely cold temperatures in winter due to snow cover. Some genotypes have been previously observed at this site, indicating that the population composition is stable. This work highlights the importance of resistant pre-akinetes in surviving winter conditions, the ability of algae to re-establish mats, and the need to address the hidden diversity of the genus Zygnema.
- Klíčová slova
- Chlorophyll fluorescence, Cryptic diversity, Freezing, Hidden diversity, Overwintering,
- MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- roční období MeSH
- Streptophyta * MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Rakousko MeSH
- Názvy látek
- voda MeSH
UNLABELLED: Red snow caused by spherical cysts can be found worldwide, while an orange snow phenomenon caused by spherical cells is restricted to (Sub-)Arctic climates. Both bloom types, occurring in the same localities at Svalbard, were compared ecophysiologically. Using a combination of molecular markers and light- and transmission electron microscopy, cells were identified as Sanguina nivaloides and Sanguina aurantia (Chlorophyceae). In search for reasons for a cosmopolitan vs. a more restricted distribution of these microbes, significant differences in fatty acid and pigment profiles of field samples were found. S. aurantia accumulated much lower levels of polyunsaturated fatty acids (21% vs. 48% of total fatty acids) and exhibited lower astaxanthin-to-chlorophyll-a ratio (2-8 vs. 12-18). These compounds play an important role in adaptation to extreme conditions at the snow surface and within snow drifts. Accordingly, the performance of photosystem II showed that one third to nearly half of the photosynthetic active irradiation was sufficient in S. aurantia, compared to S. nivaloides, to become light saturated. Furthermore, formation of plastoglobules observed in S. nivaloides but missing in S. aurantia may contribute to photoprotection. The rapid light curves of the two species show to a certain extent the shade-adapted photosynthesis under the light conditions at Svalbard (high α-value 0.16 vs. 0.11, low saturation point I k 59 vs. 86). These results indicate significant physiological and ultrastructural differences of the two genetically closely related cryoflora species, but the reasons why S. aurantia has not been found at conditions outside (Sub-)Arctic climate types remain unknown. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s00300-020-02778-0) contains supplementary material, which is available to authorised users.
- Klíčová slova
- Arctic, Astaxanthin, Chlamydomonas nivalis, Cryoflora, Green algae, Polyunsaturated fatty acid,
- Publikační typ
- časopisecké články MeSH