Nejvíce citovaný článek - PubMed ID 32230748
Multi-Component Antioxidative System and Robust Carbohydrate Status, the Essence of Plant Arsenic Tolerance
In a pot experiment, cherry radish (Raphanus sativus var. sativus Pers. 'Viola') was cultivated under two levels of As soil contamination-20 and 100 mg/kg. The increasing As content in tubers with increasing soil contamination led to changes in free amino acids (AAs) and phytohormone metabolism and antioxidative metabolites. Changes were mainly observed under conditions of high As contamination (As100). The content of indole-3-acetic acid in tubers varied under different levels of As stress, but As100 contamination led to an increase in its bacterial precursor indole-3-acetamide. A decrease in cis-zeatin-9-riboside-5'-monophosphate content and an increase in jasmonic acid content were found in this treatment. The free AA content in tubers was also reduced. The main free AAs were determined to be transport AAs (glutamate-Glu, aspartate, glutamine-Gln, asparagine) with the main portion being Gln. The Glu/Gln ratio-a significant indicator of primary N assimilation in plants-decreased under the As100 treatment condition. A decrease in antioxidative metabolite content-namely that of ascorbic acid and anthocyanins-was observed in this experiment. A decline in anthocyanin content is related to a decrease in aromatic AA content which is crucial for secondary metabolite production. The changes in tubers caused by As contamination were reflected in anatomical changes in the radish tubers and roots.
- Klíčová slova
- metalloid, methionine, stress metabolism, vegetable, vitamin C,
- Publikační typ
- časopisecké články MeSH
Arsenic is a ubiquitous toxic element that can be accumulated into plant parts. The present study investigated the response of Pteris cretica and Spinacia oleracea to As treatment through the analysis of selected physiological and metabolic parameters. Plants were grown in pots in As(V) spiked soil (20 and 100 mg/kg). Plants' physiological condition was estimated through the determination of elements, gas-exchange parameters, chlorophyll fluorescence, water potential, photosynthetic pigments, and free amino acid content. The results confirmed differing As accumulation in plants, as well as in shoots and roots, which indicated that P. cretica is an As-hyperaccumulator and that S. oleracea is an As-root excluder. Variations in physiological and metabolic parameters were observed among As treatments. Overall, the results revealed a significant effect of 100 mg/kg As treatment on the analysed parameters. In both plants, this treatment affected growth, N, Mg, S, Mn, and Zn content, as well as net photosynthetic rate, chlorophyll fluorescence, and total free amino acid content. In conclusion, the results reflect the similarity between P. cretica and S. oleracea in some aspects of plants' response to As treatment, while physiological and metabolic parameter changes related to As treatments indicate the higher sensitivity of S. oleracea.
- Klíčová slova
- abiotic stress, amaranthaceae family, arsenic contamination, fern, metalloid, pteridaceae family, spinach,
- Publikační typ
- časopisecké články MeSH