Nejvíce citovaný článek - PubMed ID 32258026
Altered Erythro-Myeloid Progenitor Cells Are Highly Expanded in Intensively Regenerating Hematopoiesis
In bone marrow transplantation (BMT), hematopoiesis-reconstituting cells are introduced following myeloablative treatment, which eradicates existing hematopoietic cells and disrupts stroma within the hematopoietic tissue. Both hematopoietic cells and stroma then undergo regeneration. Our study compares the outcomes of a second BMT administered to mice shortly after myeloablative treatment and the first BMT, with those of a second BMT administered to mice experiencing robust hematopoietic regeneration after the initial transplant. We evaluated the efficacy of the second BMT in terms of engraftment efficiency, types of generated blood cells, and longevity of function. Our findings show that regenerating hematopoiesis readily accommodates newly transplanted stem cells, including those endowed with a robust capacity for generating B and T cells. Importantly, our investigation uncovered a window for preferential engraftment of transplanted stem cells coinciding with the resumption of blood cell production. Repeated BMT could intensify hematopoiesis reconstitution and enable therapeutic administration of genetically modified autologous stem cells.
- Klíčová slova
- B cells, T cells, hematopoiesis, immune system, regeneration, stem cell, transplantation,
- MeSH
- hematopoetické kmenové buňky imunologie MeSH
- hematopoéza * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- regenerace MeSH
- rekonstituce imunitních funkcí MeSH
- transplantace kostní dřeně * metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The immense regenerative power of hematopoietic tissue stems from the activation of the immature stem cells and the progenitor cells. After partial damage, hematopoiesis is reconstituted through a period of intense regeneration when blood cell production originates from erythro-myeloid progenitors in the virtual absence of stem cells. Since the damaged hematopoiesis can also be reconstituted from transplanted hematopoietic cells, we asked whether this also leads to the transient state when activated progenitors initially execute blood cell production. We first showed that the early reconstitution of hematopoiesis from transplanted cells gives rise to extended populations of developmentally advanced but altered progenitor cells, similar to those previously identified in the bone marrow regenerating from endogenous cells. We then identified the cells that give rise to these progenitors after transplantation as LSK CD48- cells. In the submyeloablative irradiated host mice, the transplanted LSK CD48- cells preferably colonized the spleen. Unlike the endogenous hematopoiesis reconstituting cells, the transplanted whole bone marrow cells and sorted LSK CD48- cells had greater potential to differentiate to B-lymphopoiesis. Separate transplantation of the CD150- and CD150+ subsets of LSK CD48- cells suggested that CD150- cells had a greater preference to B-lymphopoiesis than CD150+ cells. In the intensively regenerating hematopoiesis, the CD71/Sca-1 plot of immature murine hematopoietic cells revealed that the expanded populations of altered myeloid progenitors were highly variable in the different places of hematopoietic tissues. This high variability is likely caused by the heterogeneity of the hematopoiesis supporting stroma. Lastly, we demonstrate that during the period when active hematopoiesis resumes from transplanted cells, the hematopoietic tissues still remain highly permissive for further engraftment of transplanted cells, particularly the stem cells. Thus, these results provide a rationale for the transplantation of the hematopoietic stem cells in successive doses that could be used to boost the transplantation outcome.
- Klíčová slova
- Sca-1 antigen, bone marrow transplantation, progenitor cell, regeneration, stem cell, transferrin receptor,
- Publikační typ
- časopisecké články MeSH