Most cited article - PubMed ID 32276452
Can Post-Activation Performance Enhancement (PAPE) Improve Resistance Training Volume during the Bench Press Exercise?
The goal of this study was to compare the effects of a bilateral conditioning activity consisting of back squats and drop jumps with a unilateral one consisting of split squats and depth jumps to lateral hop over sequentially performed countermovement jump (CMJ), modified t-agility test (MAT), and Achilles tendon stiffness. Twenty-six basketball players participated in this study and were randomly and equally assigned to one of two different test groups: bilateral (B - CA) or unilateral (U - CA) conditioning activity group. The B - CA group completed 2 sets of 4 repetitions of back squats at 80% of one-repetition maximum (1RM), then 10 drop jumps, while the U - CA group performed 2 sets of 2 repetitions of split squats on each leg at 80%1RM, followed by 5 depth jumps to lateral hop on each leg as conditioning activity (CA) complexes. After a warm-up and 5 min before the CA the baseline Achilles tendon stiffness, CMJ, and MAT time measurement were performed. In the 6th min after the CA, all tests were re-tested in the same order. The two-way repeated measures mixed ANOVAs revealed that both B - CA and U - CA failed to produce significant improvements in CMJ and MAT performance. In addition, a significant increase in Achilles stiffness was demonstrated with both protocols (a main effect of time: p = 0.017; effect size = 0.47; medium). This study revealed that combining back squats and drop jumps, as well as split squats and depth jumps to a lateral hop, had no effect on subsequent CMJ and MAT performance in basketball players. Based on these results, it can be assumed that combinations of exercises, even if they have similar movement patterns, may cause excessive fatigue, resulting in no PAPE effect.
- Keywords
- PAPE, Post-activation performance enhancement, change of direction, countermovement jump,
- MeSH
- Achilles Tendon * MeSH
- Basketball * MeSH
- Exercise MeSH
- Humans MeSH
- Posture MeSH
- Athletic Performance * MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
The effectiveness of isometric conditioning activity (CA) is not well described in terms of the level of performance enhancement and the presence of a stretch and shortening cycle in subsequent explosive tasks. Therefore, the aim of this study was to evaluate the effect of a maximum isometric squat as the CA and a subsequent squat jump (SJ) and countermovement jump (CMJ) height. A total of 31 semi-professional handball and soccer players were randomly assigned to two different conditions: (i) 3 sets of 3 repetitions (each lasting 3 s) of maximum isometric back squats (EXP), and (ii) no CA (CTRL). The jump height measurements were performed 5 min before the CA and approximately at the 4th and 8th minute following the completion of the CA. Due to the high inter-individual variability in the potentiation responses, the best value obtained post-CA was also analyzed. The SJ height significantly increased from baseline to the 8th minute post-CA (p = 0.004; ES = 0.31; Δ = +3.1 ± 5.0%) in the EXP condition. On the other hand, the CMJ height was significantly higher in the 4th (p = 0.001; ES = 0.23; Δ = +2.7 ± 3.7%) and 8th minute post-CA (p = 0.005; ES = 0.32; Δ = +3.6 ± 5.7%) in comparison to baseline during the EXP condition. Furthermore, SJ height significantly increased from baseline to the best time-point during the EXP (p < 0.001; ES = 0.47; Δ = +4.9 ± 4.9%) and CTRL (p = 0.038; ES = 0.21; Δ = +2.5 ± 5.8%) condition. Moreover, the CMJ height was significantly higher at the best time-points than at the baseline during EXP (p < 0.001; ES = 0.53; Δ = +5.6 ± 4.7%) and CTRL (p = 0.002; ES = 0.38; Δ = +3.1 ± 5.2%) condition. The findings from this study indicate that a maximum isometric squat, used as a CA, effectively improved SJ and CMJ height. This suggests that the presence or absence of a stretch and shortening cycle in both CA and post-CA tasks does not significantly impact the post-activation performance enhancement response.
- Keywords
- PAPE, complex training, countermovement jump, post-activation potentiation, squat jump,
- MeSH
- Soccer * MeSH
- Humans MeSH
- Posture MeSH
- Sports * MeSH
- Muscle Strength physiology MeSH
- Body Height MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Although velocity control in resistance training is widely studied, its utilization in eliciting post-activation performance enhancement (PAPE) responses receives little attention. Therefore, this study aimed to evaluate the effectiveness of heavy-loaded barbell squats (BS) with velocity loss control conditioning activity (CA) on PAPE in subsequent countermovement jump (CMJ) performance. Sixteen resistance-trained female volleyball players participated in this study (age: 24 ± 5 yrs.; body mass: 63.5 ± 5.2 kg; height: 170 ± 6 cm; relative BS one-repetition maximum (1RM): 1.45 ± 0.19 kg/body mass). Each participant performed two different conditions: a set of the BS at 80% 1 RM with repetitions performed until a mean velocity loss of 10% as the CA or a control condition without CA (CNTRL). To assess changes in jump height (JH) and relative mean power output (MP), the CMJ was performed 5 min before and throughout the 10 min after the CA. The two-way analysis of variance with repeated measures showed a significant main effect of condition (p = 0.008; η2 = 0.387) and time (p < 0.0001; η2 = 0.257) for JH. The post hoc test showed a significant decrease in the 10th min in comparison to the value from baseline (p < 0.006) for the CNTRL condition. For the MP, a significant interaction (p = 0.045; η2 = 0.138) was found. The post hoc test showed a significant decrease in the 10th min in comparison to the values from baseline (p < 0.006) for the CNTRL condition. No significant differences were found between all of the time points and the baseline value for the CA condition. The CA used in the current study fails to enhance subsequent countermovement jump performance in female volleyball players. However, the individual analysis showed that 9 out of the 16 participants (56%) responded positively to the applied CA, suggesting that the PAPE effect may be individually dependent and should be carefully verified before implementation in a training program.
- Keywords
- movement velocity, post activation potentiation, power, resistance training, sport science,
- MeSH
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Resistance Training * MeSH
- Posture MeSH
- Athletic Performance * MeSH
- Muscle Strength MeSH
- Volleyball * MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Background: Mechanical power output is recognized as a critical characteristic of an athlete with regard to superior performance during a competition. It seems fully justified that ballistic exercises, in which the external load is projected into a flight phase, as in the bench press throw (BPT), are the most commonly prescribed exercises for the development of power output. In addition, the muscular phenomenon known as post-activation performance enhancement (PAPE), which is an acute improvement in strength and power performance as a result of recent voluntary contractile history, has become the focus of many strength and conditioning training programs. Although the PAPE phenomenon is widely used in the upper-body training regimens, there are still several issues regarding training variables that facilitate the greatest increase in power output and need to be resolved. Objective: The purposes of this meta-analysis were to determine the effect of performing a conditioning activity (CA) on subsequent BPT performances and the influence of different types of CA, intra-complex rest intervals, and intensities during the CA on the upper-body PAPE effect in resistance-trained men. Methods: A search of electronic databases (MEDLINE, PubMed, and SPORTDiscus) was conducted to identify all studies that investigated the PAPE in the BPT up to August 2020. Eleven articles, which met the inclusion criteria, were consequently included for quality assessment and data extraction. All studies included 174 resistance-trained men [age: 25.2 ± 2.1 years; weight: 88.4 ± 7.5 kg; height: 1.82 ± 0.03 m; bench press (BP) relative strength: 1.31 ± 0.14 kg ± kg-1] as participants. Meta-analyses of standardized mean effect size (ES) between pre-CA mean and post-CA mean from individual studies were conducted using the random-effects model. Results: The effect of PAPE in the BPT was small (ES = 0.33; p < 0.01). The BP exercise as a CA at an intensity of 60-84% one-repetition maximum (1RM) (ES = 0.43) induced slightly greater PAPE effect than a ballistic-plyometric (ES = 0.29) and a BP exercise at ≥85% 1RM and at >100% 1RM as well as a concentric-only BP (ES = 0.23 and 0.22; ES = 0.11, respectively). A single set (ES = 0.37) of the CA resulted in a slightly greater effect than a multiple set (ES = 0.29). Moderate rest intervals induced a slightly greater PAPE effect for intensity below 85% 1RM (5-7 min, ES = 0.48) than shorter (0.15-4 min, ES = 0.4) and longer (≥8 min, ES = 0.36) intra-complex rest intervals. Considering an intensity above 85% 1RM during the CA, a moderate rest interval resulted in a similar PAPE effect (5-7 min, ES = 0.3) compared with longer (8 min, ES = 0.29) intra-complex rest interval, whereas shorter rest intervals resulted in a negative effect on BPT performance (0.15-4 min, ES = -0.13). Conclusion: The presented meta-analysis shows that performing a CA induces a small PAPE effect for the BPT performance in resistance-trained men. Individuals seeking to improve their BPT performance should consider preceding them with a single set of the BP exercise at moderate intensity (60-84% 1RM), performed 5-7 min before the explosive activity.