Nejvíce citovaný článek - PubMed ID 32484312
Adsorption-Free Growth of Ultra-Thin Molybdenum Membranes with a Low-Symmetry Rectangular Lattice Structure
Two-dimensional (2D) metals have drawn great attention because of their extraordinary properties, especially in applications that favor van der Waals interaction. The development of advanced characterization tools has facilitated the understanding of formation or growth mechanisms of 2D metals. In this perspective, we discuss 5 common approaches to obtaining 2D metals, including, (top down) van der Waals squeezing and selective extraction, and (bottom up) electron beam-induced growth, self-assembly, and graphene-templated wet chemistry growth. The future opportunities are proposed in the summary section. Furthermore, challenges and problems such as thermodynamic stability and scalability in 2D material growth are proposed for the community to tackle.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In recent years, two-dimensional (2D) materials have attracted a lot of research interest as they exhibit several fascinating properties. However, outside of 2D materials derived from van der Waals layered bulk materials only a few other such materials are realized, and it remains difficult to confirm their 2D freestanding structure. Despite that, many metals are predicted to exist as 2D systems. In this review, the authors summarize the recent progress made in the synthesis and characterization of these 2D metals, so called metallenes, and their oxide forms, metallene oxides as free standing 2D structures formed in situ through the use of transmission electron microscopy (TEM) and scanning TEM (STEM) to synthesize these materials. Two primary approaches for forming freestanding monoatomic metallic membranes are identified. In the first, graphene pores as a means to suspend the metallene or metallene oxide and in the second, electron-beam sputtering for the selective etching of metal alloys or thick complex initial materials is employed to obtain freestanding single-atom-thick 2D metal. The data show a growing number of 2D metals/metallenes and 2D metal/ metallene oxides having been confirmed and point to a bright future for further discoveries of these 2D materials.
- Klíčová slova
- 2D metals/metallenes, freestanding single-atom-thick membrane, in situ TEM, single-element 2D materials,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH