Most cited article - PubMed ID 32676354
Lung cancer biomarker testing: perspective from Europe
Current European/US guidelines recommend that molecular testing in advanced non-small cell lung cancer (aNSCLC) be performed using next-generation sequencing (NGS). However, the global uptake of NGS is limited, largely owing to reimbursement constraints. We compared real-world costs of NGS and single-gene testing (SGT) in nonsquamous aNSCLC. This observational study was conducted across 10 pathology centers in 10 different countries worldwide. Biomarker data collected via structured questionnaires (1 January-31 December 2021) were used to feed micro-costing analyses for three scenarios ['Starting Point' (SP; 2021-2022), 'Current Practice' (CP; 2023-2024), and 'Future Horizons' (FH; 2025-2028)] in both a real-world model, comprising all biomarkers tested by each center, and a standardized model, comprising the same sets of biomarkers across centers. Testing costs (including retesting) encompassed personnel costs, consumables, equipment, and overheads. Overall, 4,491 patients with aNSCLC were evaluated. Mean per-patient costs decreased for NGS relative to SGT over time, with real-world model costs 18% lower for NGS than for SGT in the SP scenario, and 26% lower for NGS than for SGT in the CP scenario. Mean per-biomarker costs also decreased over time for NGS relative to SGT. In the standardized model, the tipping point for the minimum number of biomarkers required for NGS to result in cost savings (per patient) was 10 and 12 in the SP and CP scenarios, respectively. Retesting had a negligible impact on cost analyses, and results were robust to variation in cost parameters. This study provides robust real-world global evidence for cost savings with NGS-based panels over SGT to evaluate predictive biomarkers in nonsquamous aNSCLC when the number of biomarkers to be tested exceeds 10. Widespread adoption of NGS may enable more efficient use of limited healthcare resources.
- Keywords
- NSCLC, cost comparison, next‐generation sequencing, precision medicine, predictive biomarker, single‐gene testing,
- MeSH
- Cost-Benefit Analysis MeSH
- Genetic Testing * economics methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Biomarkers, Tumor * genetics MeSH
- Lung Neoplasms * genetics economics diagnosis pathology MeSH
- Health Care Costs * MeSH
- Carcinoma, Non-Small-Cell Lung * genetics economics diagnosis pathology MeSH
- Aged MeSH
- High-Throughput Nucleotide Sequencing * economics MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Observational Study MeSH
- Comparative Study MeSH
- Names of Substances
- Biomarkers, Tumor * MeSH
In the past two decades, the treatment of metastatic non-small cell lung cancer (NSCLC), has undergone significant changes due to the introduction of targeted therapies and immunotherapy. These advancements have led to the need for predictive molecular tests to identify patients eligible for targeted therapy. This review provides an overview of the development and current application of targeted therapies and predictive biomarker testing in European patients with advanced stage NSCLC. Using data from eleven European countries, we conclude that recommendations for predictive testing are incorporated in national guidelines across Europe, although there are differences in their comprehensiveness. Moreover, the availability of recently EMA-approved targeted therapies varies between European countries. Unfortunately, routine assessment of national/regional molecular testing rates is limited. As a result, it remains uncertain which proportion of patients with metastatic NSCLC in Europe receive adequate predictive biomarker testing. Lastly, Molecular Tumor Boards (MTBs) for discussion of molecular test results are widely implemented, but national guidelines for their composition and functioning are lacking. The establishment of MTB guidelines can provide a framework for interpreting rare or complex mutations, facilitating appropriate treatment decision-making, and ensuring quality control.
- Keywords
- Europe, Non-small cell lung cancer, Predictive biomarker testing, Targeted therapy,
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Testing for epidermal growth factor receptor (EGFR) mutations is an essential recommendation in guidelines for metastatic non-squamous non-small-cell lung cancer, and is considered mandatory in European countries. However, in practice, challenges are often faced when carrying out routine biomarker testing, including access to testing, inadequate tissue samples and long turnaround times (TATs). MATERIALS AND METHODS: To evaluate the real-world EGFR testing practices of European pathology laboratories, an online survey was set up and validated by the Pulmonary Pathology Working Group of the European Society of Pathology and distributed to 64 expert testing laboratories. The retrospective survey focussed on laboratory organisation and daily EGFR testing practice of pathologists and molecular biologists between 2018 and 2021. RESULTS: TATs varied greatly both between and within countries. These discrepancies may be partly due to reflex testing practices, as 20.8% of laboratories carried out EGFR testing only at the request of the clinician. Many laboratories across Europe still favour single-test sequencing as a primary method of EGFR mutation identification; 32.7% indicated that they only used targeted techniques and 45.1% used single-gene testing followed by next-generation sequencing (NGS), depending on the case. Reported testing rates were consistent over time with no significant decrease in the number of EGFR tests carried out in 2020, despite the increased pressure faced by testing facilities during the COVID-19 pandemic. ISO 15189 accreditation was reported by 42.0% of molecular biology laboratories for single-test sequencing, and by 42.3% for NGS. 92.5% of laboratories indicated they regularly participate in an external quality assessment scheme. CONCLUSIONS: These results highlight the strong heterogeneity of EGFR testing that still occurs within thoracic pathology and molecular biology laboratories across Europe. Even among expert testing facilities there is variability in testing capabilities, TAT, reflex testing practice and laboratory accreditation, stressing the need to harmonise reimbursement technologies and decision-making algorithms in Europe.
- Keywords
- EGFR, Europe, molecular pathology, non-small-cell lung cancer, survey,
- MeSH
- ErbB Receptors genetics MeSH
- Laboratories MeSH
- Humans MeSH
- Mutation MeSH
- Lung Neoplasms * diagnosis genetics pathology MeSH
- Carcinoma, Non-Small-Cell Lung * diagnosis genetics pathology MeSH
- Pandemics MeSH
- Retrospective Studies MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- EGFR protein, human MeSH Browser
- ErbB Receptors MeSH
The diagnostic work-up for non-small cell lung cancer (NSCLC) requires biomarker testing to guide therapy choices. This article is the second of a two-part series. In Part 1, we summarised evidence-based recommendations for obtaining and processing small specimen samples (i.e. pre-analytical steps) from patients with advanced NSCLC. Here, in Part 2, we summarise evidence-based recommendations relating to analytical steps of biomarker testing (and associated reporting and quality assessment) of small specimen samples in NSCLC. As the number of biomarkers for actionable (genetic) targets and approved targeted therapies continues to increase, simultaneous testing of multiple actionable oncogenic drivers using next-generation sequencing (NGS) becomes imperative, as set forth in European Society for Medical Oncology guidelines. This is particularly relevant in advanced NSCLC, where tissue specimens are typically limited and NGS may help avoid tissue exhaustion compared with sequential biomarker testing. Despite guideline recommendations, significant discrepancies in access to NGS persist across Europe, primarily due to reimbursement constraints. The use of increasingly complex testing methods also has implications for the reporting of results. Molecular testing reports should include clinical interpretation with additional commentary on sample adequacy as appropriate. Molecular tumour boards are recommended to facilitate the interpretation of complex genetic information arising from NGS, and to collaboratively determine the optimal treatment for patients with NSCLC. Finally, whichever testing modality is employed, it is essential that adequate internal and external validation and quality control measures are implemented.
- Keywords
- Best practice, External quality assessment, Liquid biopsy, Molecular diagnostics, Next-generation sequencing, Non-small cell lung carcinoma,
- MeSH
- Biomarkers MeSH
- Humans MeSH
- Mutation MeSH
- Lung Neoplasms * diagnosis drug therapy genetics MeSH
- Carcinoma, Non-Small-Cell Lung * diagnosis genetics pathology MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Biomarkers MeSH