Most cited article - PubMed ID 32677476
Daily Rhythms of Female Self-maintenance Correlate with Predation Risk and Male Nest Attendance in a Biparental Wader
BACKGROUND: Chicks of precocial birds hatch well-developed and can search actively for food but their homeothermy develops gradually during growth. This makes them dependent on heat provided by parents ("brooding"), which is then traded off against other activities, mainly foraging. Although brooding has been documented in many precocial birds, little is known about the differences in the amount and efficiency of brooding care, brooding diel rhythmicity, and impact on the chick's growth, particularly between species living in different climatic conditions. RESULTS: We used multisensory dataloggers to evaluate brooding patterns in two congeneric species inhabiting contrasting climate zones: temperate Northern lapwing (Vanellus vanellus) and desert Red-wattled lapwing (Vanellus indicus). In accordance with our expectation, the adult desert lapwings brooded the chicks slightly less compared to the adult temperate lapwings. However, the desert lapwings brooded their chicks in higher ambient temperatures and less efficiently (i.e. they could not reach the same brooding temperature as the temperate lapwings), which are new and hitherto unknown brooding patterns in precocial birds. In both species, night brooding prevailed even during warm nights, suggesting a general brooding rule among birds. Although the high rates of brooding can reduce the time spent by foraging, we found no negative effect of the high brooding rate on the growth rate in either species. CONCLUSIONS: Our data suggest that the chicks of species breeding in colder climates may reduce their thermal demands, while their parents may increase the efficiency of parental brooding care. More research is however needed to confirm this as a rule across species.
- Keywords
- Accelerometer, Brooding, Hidden Markov models, Multisensory datalogger, Shorebirds,
- Publication type
- Journal Article MeSH
Predation is the most common cause of nest failure in birds. While nest predation is relatively well studied in general, our knowledge is unevenly distributed across the globe and taxa, with, for example, limited information on shorebirds breeding in subtropics. Importantly, we know fairly little about the timing of predation within a day. Here, we followed 444 nests of the red-wattled lapwing (Vanellus indicus), a ground-nesting shorebird, for a sum of 7,828 days to estimate a nest predation rate, and continuously monitored 230 of these nests for a sum of 2,779 days to reveal how the timing of predation changes over the day and season in a subtropical desert. We found that 312 nests (70%) hatched, 76 nests (17%) were predated, 23 (5%) failed for other reasons, and 33 (7%) had an unknown fate. Daily predation rate was 0.95% (95%CrI: 0.76% - 1.19%), which for a 30-day long incubation period translates into ~25% (20% - 30%) chance of nest being predated. Such a predation rate is low compared to most other avian species. Predation events (N = 25) were evenly distributed across day and night, with a tendency for increased predation around sunrise, and evenly distributed also across the season, although night predation was more common later in the season, perhaps because predators reduce their activity during daylight to avoid extreme heat. Indeed, nests were never predated when midday ground temperatures exceeded 45℃. Whether the diel activity pattern of resident predators undeniably changes across the breeding season and whether the described predation patterns hold for other populations, species, and geographical regions await future investigations.
- Keywords
- continuous monitoring, diel pattern, diel timing, nest predation, predation rate, red‐wattled lapwing, shorebirds, survival analyses, timing of predation, waders,
- Publication type
- Journal Article MeSH